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Motivation

Forecasts about the environment
« = temporally abstract predictions (questions)

not necessarily related to reward (unsupervised)

conditioned on a behavior
(aka GVFs, nexting)
many of them

Why?

 better, richer representations (features)

* decomposition, modularity
« temporally abstract planning, long horizons
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Example forecasts

* Hitting the wall
+ if the agent aims for the nearest wall
« if the agent goes for the door
* Remaining time on battery
+ if the agent stands still
« if the agent keeps moving
* Luminosity increase

« if the agent presses the light switch
« if the agent waits for sunrise
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Concretely, for this work:

Subgoal forecasts

* Reaching any of a set of states, then
» the episode terminates (y = 0)
* and a pseudo-reward of 1 is given

* Various time-horizons induced by vy
* Q-values are for the optimal policy that tries
to reach the subgoal (alignment)

Neural networks as function approximators
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Combinatorial numbers of subgoals

Why?
* pbecause the environment admits
tons of predictions
* any of them could be useful for the task
How? s
 efficiency
* sub-linear cost in the number of subgoals
« exploit shared structure in value space
» generalize to similar subgoals IR
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Outline

* Motivation

 |earn values for forecasts

o efficiently for many subgoals
* Approach

* new architecture
 one neat trick

 Results
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Universal Value Function Approximator

 a single neural network producing Q(s, a; g)
 for many subgoals g
* generalize between subgoals
e compact

Q(s,a,g)

. UVFA (“you-fah”)

S,a g
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UVFA architectures

* Vanilla (monolithic)
* Two-stream

» separate embeddings ¢ and y for states and subgoals
* Q-values = dot-product of embeddings
* (works better) Qs,2,8) Qs,2;2)
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UVFA learning
* Method 1: bootstrapping

Q(sta atag) — « (Tg + Yg Hz’a,’XQ(St-I-laa,ag))
+ (1 T Of) Q(Sta a'tag)

« some stability issues

« Method 2:

* built training set of subgoal values
* train with supervised objective

* like neuro-fitted Q-learning

« (works better)
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Trick for supervised UVFA learning: FLE

Stage 1: Factorize
Stage 2: Learn Embeddings

—o | Q(s,2:8) | )| i (e !
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s, a g b(s,a) P(g) S,a g
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Stage 1: Factorize (low-rank)

e target embeddings for states and goals
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Stage 2: Learn Embeddings

e regression from state/
subgoal features
to target embeddings

(optional Stage 3):
end-to-end fine-tuning
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FLE vs end-to-end regression

e between 10x and 100x faster

Policy Quality MSE
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Results: Low-rank is enough

Policy Quality by Rank
(over 10 random bisections of subgoal space)
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Results: Generalizing to new subgoals

Policy Quality (Validation Set)
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Results: Extrapolation

even to subgoals in unseen fourth room:
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Results: Transfer to new subgoals

Refining UVFA is much faster
than learning from scratch
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Results: Pacman pellet subgoals

training set test set
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Results: pellet subgoal values (test set)

“truth”

UVFA generalization
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Summary

 UVFA

« compactly represent values for many subgoals
* generalization, even extrapolation
* transfer learning

 FLE
* a trick for efficiently training UVFAs

 side-effect: interesting embedding spaces
 scales to complex domains (Pacman from raw vision)

Details: see our paper at ICML 2015
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