

Universal Value Function Approximators

Google DeepMind

Tom Schaul, Dan Horgan, Karol Gregor, Dave Silver

Motivation

Forecasts about the environment

- = temporally abstract predictions (questions)
- not necessarily related to reward (unsupervised)
- conditioned on a behavior
- (aka GVFs, nexting)
- many of them

Why?

- better, richer representations (features)
- decomposition, modularity
- temporally abstract planning, long horizons

Example forecasts

- Hitting the wall
 - if the agent aims for the nearest wall
 - if the agent goes for the door
- Remaining time on battery
 - if the agent stands still
 - if the agent keeps moving
- Luminosity increase
 - if the agent presses the light switch
 - if the agent waits for sunrise

Concretely, for this work:

Subgoal forecasts

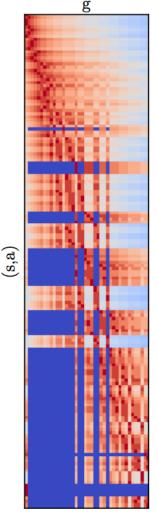
- Reaching any of a set of states, then
 - the episode terminates ($\gamma = 0$)
 - and a pseudo-reward of 1 is given
- Various time-horizons induced by γ
- Q-values are for the optimal policy that tries to reach the subgoal (alignment)

Neural networks as function approximators

Combinatorial numbers of subgoals

Why?

- because the environment admits tons of predictions
- any of them could be useful for the task
 How?
- efficiency
 - sub-linear cost in the number of subgoals
- exploit shared structure in value space
- generalize to similar subgoals

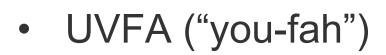


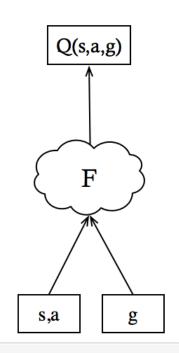
Outline

- Motivation
 - learn values for forecasts
 - efficiently for many subgoals
- Approach
 - new architecture
 - one neat trick
- Results

Universal Value Function Approximator

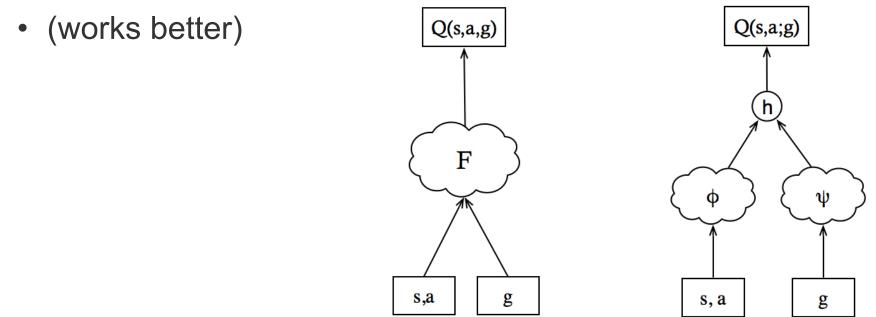
- a single neural network producing Q(s, a; g)
 - for many subgoals g
 - generalize between subgoals
 - compact





UVFA architectures

- Vanilla (monolithic)
- Two-stream
 - separate embeddings ϕ and ψ for states and subgoals
 - Q-values = dot-product of embeddings



UVFA learning

Method 1: bootstrapping

$$Q(s_t, a_t, g) \leftarrow \alpha \left(r_g + \gamma_g \max_{a'} Q(s_{t+1}, a', g) \right) \\ + (1 - \alpha) Q(s_t, a_t, g)$$

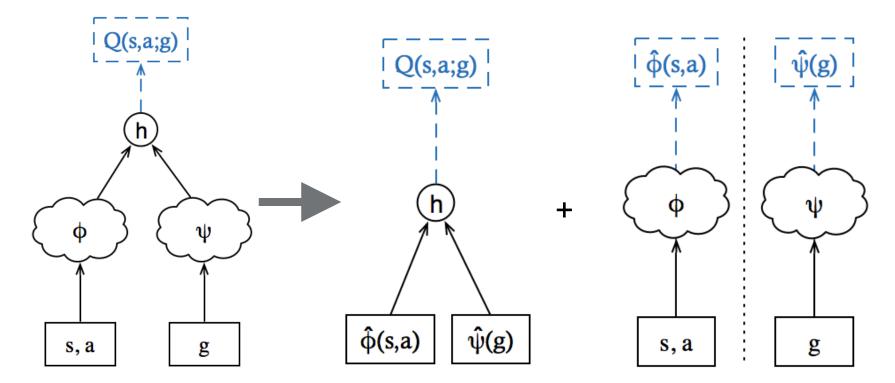
- some stability issues
- Method 2:
 - built training set of subgoal values
 - train with supervised objective
 - like neuro-fitted Q-learning
 - (works better)

Outline

- Motivation
 - learn values for forecasts
 - efficiently for many subgoals
- Approach
 - new architecture: UVFA
 - one neat trick
- Results

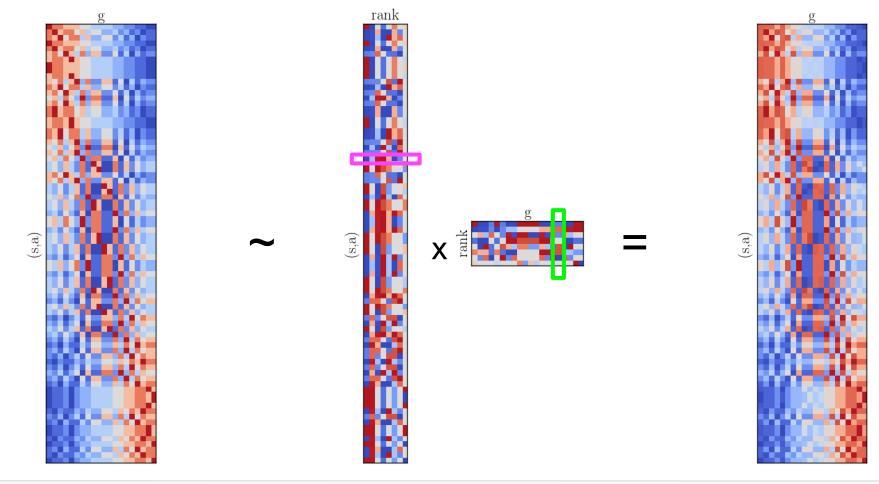
Trick for supervised UVFA learning: FLE

Stage 1: Factorize Stage 2: Learn Embeddings



Stage 1: Factorize (low-rank)

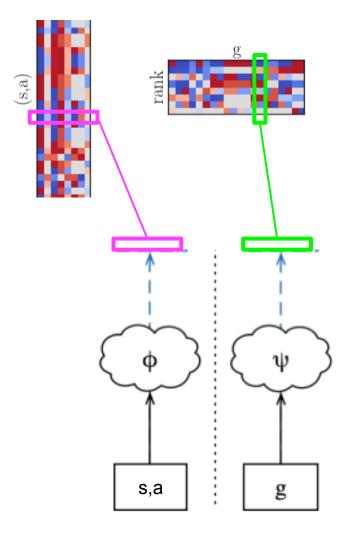
• target embeddings for states and goals



Stage 2: Learn Embeddings

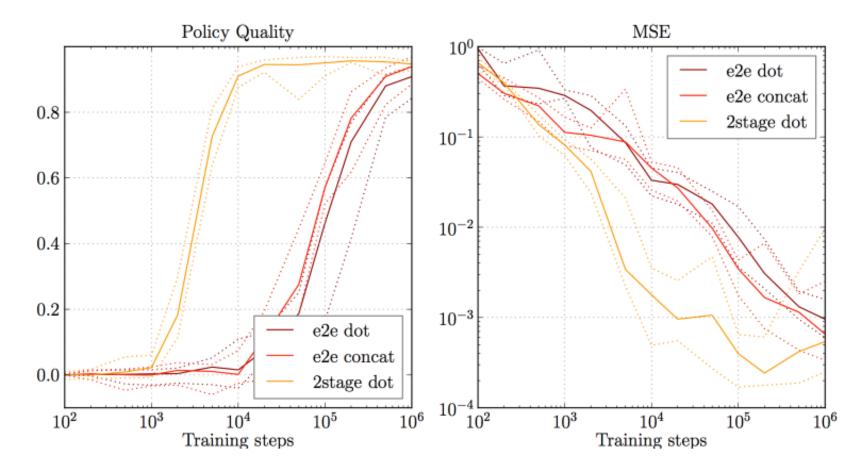
 regression from state/ subgoal features to target embeddings

(optional Stage 3): end-to-end fine-tuning



FLE vs end-to-end regression

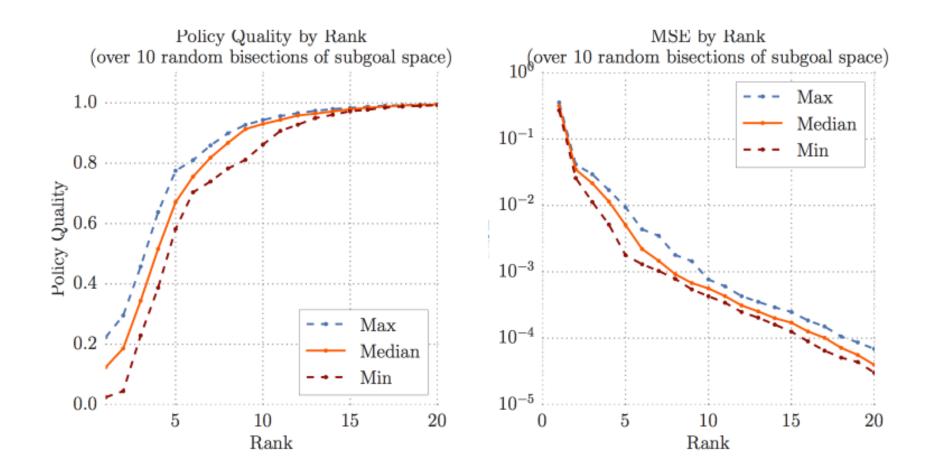
between 10x and 100x faster



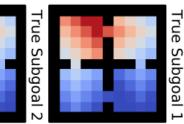
Outline

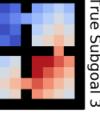
- Motivation
 - learn values for forecasts
 - efficiently for many subgoals
- Approach
 - new architecture: UVFA
 - one neat trick: FLE
- Results

Results: Low-rank is enough



Results: Low-rank embeddings

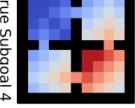


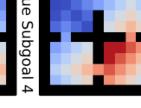


True

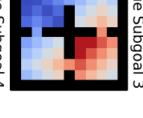
Subgoal

Reconstructed Subgo

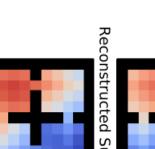


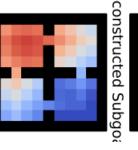


Reconstructed Subgo

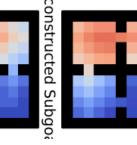


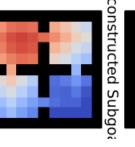
True

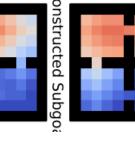


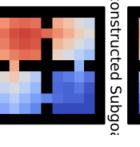


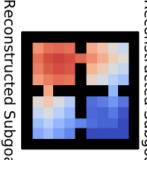
Reconstructed Subgoa





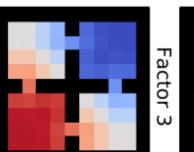


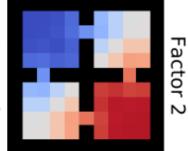




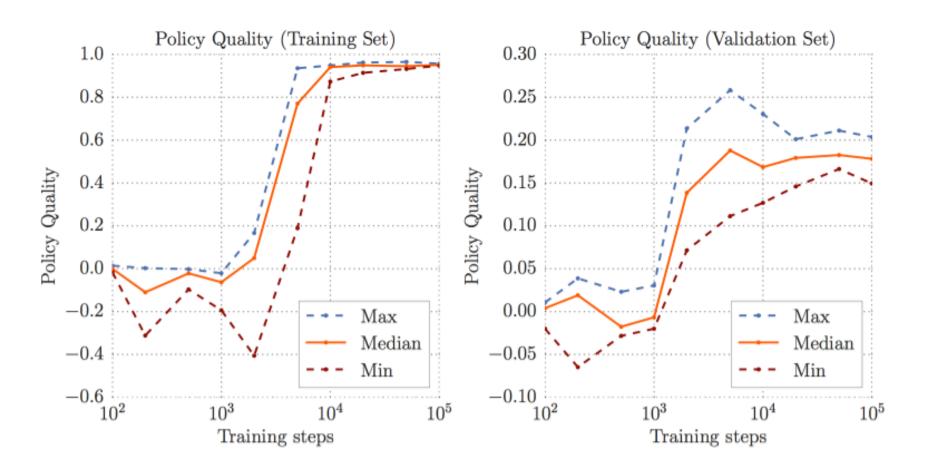
Factor 1

Reconstructed Subgoal 1



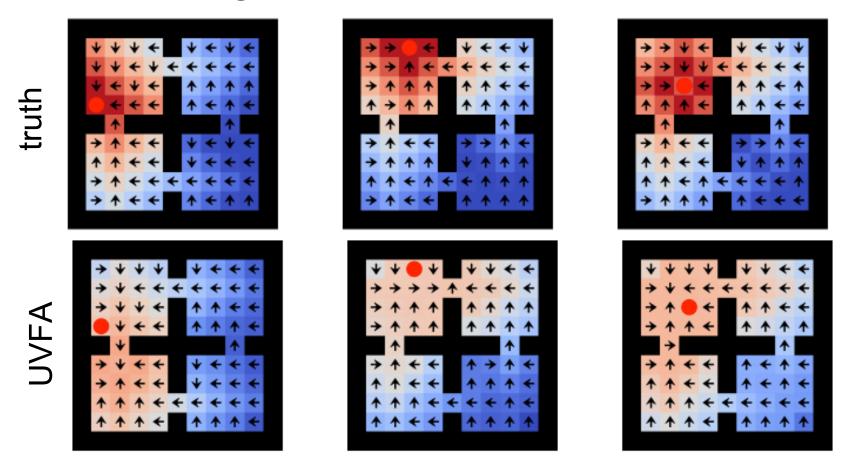


Results: Generalizing to new subgoals



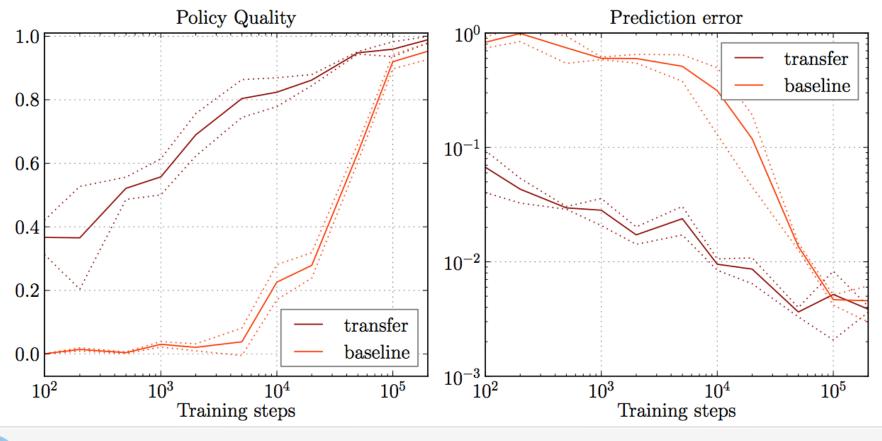
Results: Extrapolation

even to subgoals in unseen fourth room:



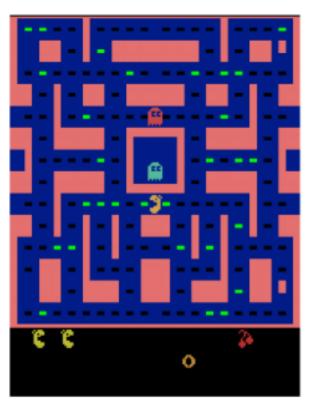
Results: Transfer to new subgoals

Refining UVFA is much faster than learning from scratch



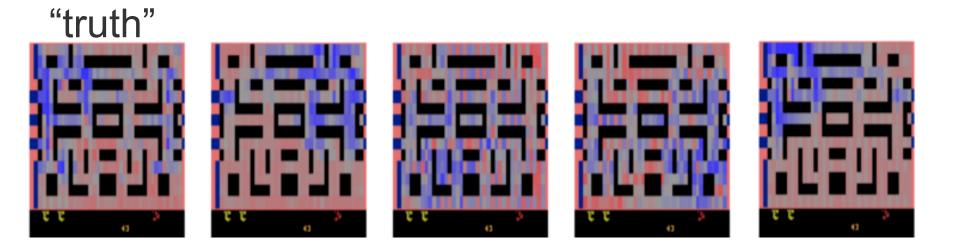
Results: Pacman pellet subgoals

training set

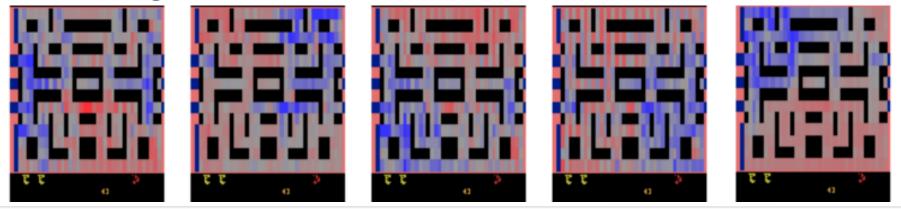


test set

Results: pellet subgoal values (test set)



UVFA generalization



Summary

- UVFA
 - compactly represent values for many subgoals
 - generalization, even extrapolation
 - transfer learning
- FLE
 - a trick for efficiently training UVFAs
 - side-effect: interesting embedding spaces
 - scales to complex domains (Pacman from raw vision)

Details: see our paper at ICML 2015

