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1. Motivation

Large-scale learning problems require algorithms
that scale benignly with respect to the size of the
dataset and the number of parameters to be trained;
leading numerous practitioners to favor the classic
stochastic gradient descent (SGD [1, 2, 3]) over more
sophisticated methods.

Besides its fast convergence, SGD has been ob-
served to sometimes lead to signi�cantly better gen-
eralization performance than batch gradient descent.
SGD is also quicker than batch methods in adapting
to non-stationary data distributions. Its Achilles heel
are the inherently sequential updates, making it very
di�cult to parallelize across many machines; which is
clashing with the goals of large-scale learning.

Our goals here are twofold. On the theoreti-
cal level, we want to gain a fuller understanding of
how the dynamics of stochastic updates contrast with
those of batch updates, and how they are a�ected by
the conditioning of energy surfaces, the presence of
local optima, and the properties of the data distri-
bution. On the practical level, we want to use this
knowledge to design more e�cient mini-batch SGD
variants (which are parallelizable), together with ro-
bust settings for their hyper-parameters.

The study of stochastic gradient methods dates
back over six decades [1, 2, 3, 4, 5, 6, 7], but to
our knowledge, the present questions remain under-
studied. The most similar viewpoint is found in ap-
proaches based on natural gradients and information
geometry [8, 9, 10].

2. Conjecture

A distinct feature of stochastic updates is that they
capture (geometric) properties of the data distribu-
tion. This is impossible for batch methods, because
these aspects are lost during gradient averaging, al-
lowing them only to retain information about the ge-
ometry of the energy function. Those geometries may
or may not be related, but decoupling their e�ects can
improve our understanding.

We claim that using the data geometry is precisely
what enables SGD to obtain better generalization
performance.

3. Analysis

We take a closer look at the dynamics of stochas-
tic gradient methods (with batch sizes ranging from
one sample to the full training set), in cases when the
energy function exhibits high curvature or multiple
local optima, and when the data distribution is not

homogeneous.
For this, we �rst study the continuous-time dif-

fusion process corresponding to SGD, on a class of
convex learning problems (where each sample makes
a quadratic contribution to the loss). We characterize
the expected di�erence between training and gener-
alization error, and �nd an analytic formulation of
the entire stochastic process for this simple case. The
stationary distribution (for each parameter θ) is the
Gaussian
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where m is the mini-batch size, D is the dataset size,
η is the learning rate, λ is the curvature and σ2 is
the variance of the data. There is no di�erence in ex-
pected generalization performance between SGD and
batch gradient descent, if the learning rate η decays
to zero. We also derive the optimal settings at each it-
eration for the mini-batch size and the learning rates,
given an estimate of the local curvature and covari-
ance matrices.

Second, we analyze a prototypical multi-modal en-
ergy surface, where some of the local optima exhibit
much more robust generalization properties than oth-
ers. Preliminary results show that the higher the
stochasticity of the updates (i.e., smaller batch-size),



Figure 1. Illustration of generalization di�erences. Plotted are median training and test
errors on the generalized XOR task, after training a one hidden layer perceptron until con-
vergence (10k total data samples seen, 10 independent runs per setting). We vary the size
of the training set and compare SGD with the batch method LBFGS, for two di�erent net-
work sizes (4 or 20 hidden neurons, on the left and right plots respectively), without using
regularization. We observe that LBFGS over�ts more prominently to small datasets than
SGD.

the higher the likelihood of converging to a robust
optimum.

4. Experiments

Our analytical results make simpli�ed assumptions
on the problem structure. Thus, in order to demon-
strate that the results hold qualitatively on real-world
problems, we conducted two sets of neural-network
training experiments.

Using small multilayer perceptrons on the gener-
alized XOR task, we can do extensive comparisons
(on convergence speed and generalization) by varying
all of the following parameters: regularization coef-
�cient, size of training dataset, network size, size of
mini-batch and learning rate.

In a second batch of experiments, we apply our
new settings to training convolutional networks on the
MNIST digit recognition dataset, and determine the
speedups in computation time gained from adaptive
mini-batch sizes. We also determine the impact on
generalization of maintaining SGD-levels of stochas-
ticity in the mini-batch updates.

5. Conclusion

Motivated by scalability and parallelization issues,
study how stochastic gradient updates can improve
generalization performance, due to better capturing
the underlying geometry of the data distribution. Our
approach builds on analytically tractable, prototypi-
cal problem classes, and the conclusions are then val-
idated on two classical neural network learning prob-
lems.

References

[1] H. Robbins and S. Monro, A stochastic approx-
imation method, Ann. Math. Stat., Vol. 22, pp.
400-407. 1951.

[2] J. Wolfowitz, On the stochastic approximation
method of Robbins and Monro, Ann. Math.
Stat., Vol. 23, pp. 457-461. 1952.

[3] R.D. Martin and C.J. Masreliez. Robust estima-
tion via stochastic approximation. IEEE Trans.
Inform. Theory, 21, pp. 263-271. 1975.

[4] B.T. Polyak and A.B. Juditsky. Acceleration of
Stochastic Approximation by Averaging. SIAM
Journal on Control and Optimization 30, No. 4.
pp. 838-855. 1992.

[5] A. Nemirovski, A. Juditsky, G. Lan and A.
Shapiro. Robust Stochastic Approximation Ap-
proach to Stochastic Programming. SIAM Jour-
nal of Optimization 19, No. 4. pp. 1574-1609.
2009.

[6] W. Xu. Towards Optimal One Pass Large Scale
Learning with Averaged Stochastic Gradient De-
scent. Technical report. 2010.

[7] F. Bach and E. Moulines. Non-Asymptotic Anal-
ysis of Stochastic Approximation Algorithms for
Machine Learning. Advances in Neural Informa-
tion Processing Systems (NIPS). 2011.

[8] S. I. Amari. Natural Gradient Works E�ciently
in Learning. Neural Computation, 10, 251-276.
1998.

[9] J. Peters, and S. Schaal. Natural Actor-Critic.
Neurocomputing, 71, 1180-1190. 2008.

[10] Y. Sun, D. Wierstra, T. Schaul, and J. Schmid-
huber. Stochastic Search using the Natural
Gradient. International Conference on Machine
Learning (ICML). 2009.


