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ABSTRACT
The family of natural evolution strategies (NES) offers a
principled approach to real-valued evolutionary optimiza-
tion by following the natural gradient of the expected fit-
ness on the parameters of its search distribution. While gen-
eral in its formulation, existing research has focused only on
multivariate Gaussian search distributions. We address this
shortcoming by exhibiting problem classes for which other
search distributions are more appropriate, and then derive
the corresponding NES-variants.

First, we show how simplifying NES to separable distri-
butions reduces its complexity from O(d3) to O(d), and ap-
ply it to problems of previously unattainable dimensionality,
recovering lowest-energy structures on the Lennard-Jones
atom clusters and state-of-the-art results on neuro-evolution
benchmarks. Second, we develop a new, equivalent formu-
lation based on invariances, which allows us to generalize
NES to heavy-tailed distributions, even if their variance is
undefined. We then investigate how this variant aids in over-
coming deceptive local optima.

Categories and Subject Descriptors
[Evolution Strategies and Evolutionary Programming]

General Terms
Algorithms

Keywords
evolution strategies, natural gradient, black-box optimiza-
tion, global optimization

1. INTRODUCTION
Research on Evolution Strategies (ES) for real-valued black

box search and optimization has traditionally focused on
Gaussian search distributions of various kinds, ranging from
the simplicity of rotation symmetric radial Gaussians to the
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flexibility of fully adaptive covariance matrices [1]. The fam-
ily of Gaussian search distributions is the canonical choice
for its convenient properties among distributions with ex-
isting first and second moments. Natural Evolution Strate-
gies (NES [14, 3]) are a recent class of evolution strategies
that adapt the search distribution by ascending the natural
gradient of expected fitness. NES is a principled approach
that offers the flexibility to adapt arbitrary classes of search
distributions, without being restricted to continuous search
spaces, as long as they have continuous parameters.

Previous research on NES has focused exclusively on mul-
tivariate Gaussian search distributions. In this respect it has
been in line with state-of-the-art algorithms such as CMA-
ES [8, 5]. In this article we demonstrate the flexibility of
NES by extending it to various types of search distributions.
The goal of these extensions is to overcome two different lim-
itations of existing algorithms.

One type of shortcoming of the NES algorithm is its lim-
ited applicability to high-dimensional problems. This limi-
tation has two facets. The computational complexity of a
typical NES variant with fully adaptive Gaussian search dis-
tribution is O(d3) operations per generation, where d in the
dimensionality of the search space. A second effect is that
the adaptation of O(d2) parameters in the covariance ma-
trix limits the sample efficiency of the adaptation scheme.
Thus, adapting the full covariance matrix is not necessarily
a good strategy for solving high-dimensional optimization
problems. The remedy we suggest is to limit the search dis-
tribution to diagonal covariance matrices (as was done for
CMA-ES in [9]). The resulting algorithm, separable NES
(SNES), allows for linear time updates and makes the algo-
rithm applicable to extremely high-dimensional problems –
under the implicit assumption that the problem variables
are mostly separable. Furthermore, this variant permits
the straightforward extension of NES to separable but non-
Gaussian search distributions.

To overcome a different type of limitation, we extend NES
to heavy-tailed search distributions (e.g., the Cauchy distri-
bution). In contrast to distributions with bounded variance,
such distributions search the space with an emphasis on big
jumps. An ES relying on search distributions with bounded
variance is known to follow the so-called ‘global trend’ of
the fitness landscape. This behavior can be understood as
moving the high probability region of the search distribution
to a related (typically shrunken) region with good average
fitness1, where the averaging takes place on the scale of the

1With rank-based selection this amounts to focusing on a
quantile, like fitness values better than the median fitness



current standard deviation. In contrast, for heavy-tailed dis-
tributions such a scale does not exist, due to a substantially
increased chance of sampling huge variations. Thus, heav-
ily tailed distributions are promising candidates for solving
highly multi-modal problems that can not be solved solely
by following a global trend, while maintaining the capability
of ESs to descend into local optima.

The paper is organized as follows. We start with an in-
troduction to the general NES scheme, including two recent
variants, the exponential version (xNES, [3]) and the hill-
climber version [2]. We then introduce SNES with its com-
putationally efficient updates, and generalize NES to heavy-
tailed search distributions. We evaluate the new algorithms
on a broad collection of benchmark problems, illustrating
both the usefulness of heavy-tailed distributions for global
optimization, and the power of the SNES algorithm on the
Lennard-Jones potential [13], which is high-dimensional and
highly multi-modal at the same time.

2. NATURAL EVOLUTION STRATEGIES
Natural evolution strategies (NES) [14, 12, 11, 2, 3] are

a class of evolutionary algorithms for real-valued optimiza-
tion that maintain a search distribution, and adapt the dis-
tribution parameters by following the natural gradient of
expected fitness. This avoids drawbacks of the plain gradi-
ent which are prone to slow or even premature convergence.
Although relying exclusively on function evaluations, the re-
sulting optimization behavior closely resembles second order
optimization techniques. Just like CMA-ES [8, 5], NES al-
gorithms are invariant under monotone transformations of
the fitness function and linear transformations of the search
space.

In each generation the algorithm samples a population of
λ ∈ N individuals zk ∼ π(z|θ), k ∈ {1, . . . , λ}, i.i.d. from
its search distribution, which is parameterized by θ, with
the goal to maximize a fitness function f : Rd → R. The
expected fitness under the search distribution is

J(θ) = Eθ[f(x)] =

∫
f(x) π(x | θ) dx .

The gradient w.r.t. the parameters can be rewritten as

∇θJ(θ) =∇θ

∫
f(z) π(z | θ) dx

=Eθ [f(z) ∇θ log π(z | θ)] ,

(see [14] for the full derivation) from which we obtain the
Monte Carlo estimate

∇θJ(θ) ≈
1

λ

λ∑

k=1

f(zk) ∇θ log π(zk | θ)

of the search gradient. The key step then consists in re-
placing this gradient, pointing into the direction of (locally)
steepest ascent w.r.t. the given parameterization, by the nat-
ural gradient

∇̃θJ = F−1∇θJ(θ) .

where F = E

[
∇θ log π (z|θ)∇θ log π (z|θ)>

]
is the Fisher

information matrix; leading to a straightforward scheme of
natural gradient ascent for iteratively updating the search

under the current distribution.

distribution

θ ← θ + η∇̃θJ = θ + ηF−1∇θJ(θ) ,

with learning rate parameter η. Note that this general for-
mulation is applicable to arbitrary (parameterizable) search
distributions. The sequence of 1) sampling an offspring pop-
ulation, 2) computing the corresponding Monte Carlo es-
timate of the fitness gradient, 3) transforming it into the
natural gradient, and 4) updating the search distribution,
constitutes one generation of NES.

For the case of the multi-variate Gaussian search distri-
bution, a specific formulation was introduced in [3], called
“exponential NES” (xNES), which removes the requirement
of the costly inversion of F, using a two-fold change of co-
ordinate system. The exponential map M 7→ exp(M) =∑∞

n=0
1
n!
Mn for symmetric matrices is used to encode the

covariance matrix, resulting in a multiplicative form of the
covariance matrix update (see [3] for details). At the same
time all updates are computed in a local“natural”coordinate
system, with respect to which the current search distribu-
tion has zero mean and unit covariance, which results in the
trivial Fisher matrix F = I.

In the resulting algorithm, the distribution parameters
θ = 〈µ,Σ〉, where µ ∈ R

d is the mean vector and Σ ∈ R
d×d

is the covariance matrix, are split canonically into three in-
variant components. This amounts to a (non-redundant)
representation similar to CMA-ES, that is, we split off a
global step size variable from the covariance matrix in the
form Σ = σ2 · B>B, with σ ∈ R

+ and det(B) = 1. We
write A = σ · B for a factor of the covariance matrix, ful-
filling Σ = A>A. We obtain the corresponding gradient
components

∇µJ =
λ∑

k=1

f(zk) · sk

∇MJ =
λ∑

k=1

f(zk) · (sks
>
k − I)

∇σJ = tr(∇MJ)/d

∇BJ = ∇MJ −∇σJ · I ,

where samples are drawn from the standard multinormal
distribution sk ∼ N (0, I), before being mapped back into the
original coordinate system zk = µ + σB>sk. The updates
then become:

µ←µ+ ηµ · σB · ∇µJ

σ ←σ · exp(ησ/2 · ∇σJ)

B←B · exp(ηB/2 · ∇BJ) ,

where ηµ, ησ, and ηB denote learning rates for the different
components (refer to [3] for further details).

If raw fitness values are used, the algorithm will be prone
to getting stuck on plateaus and to systematically jumping
over steep optima. Thus, fitness shaping [14] is used to
normalize the fitness values by replacing them by rank-based
utility values uk ∈ R, k ∈ {1, . . . , λ}. For this purpose we
order the individuals by fitness, with z1:λ denoting the best
and zλ:λ denoting the worst offspring. We then use the
“fitness-shaped” gradient

∇θJ =
λ∑

k=1

uk · ∇(θ) log π(zk:λ | θ)



to update the parameters of the search distribution. Typi-
cally, the utility values are either non-negative numbers that
add to one, or a shifted variant with zero mean.

In addition to robustness, these utility values provide us
with an elegant formalism to describe a (1+1) hill-climber
within the same framework, by using different utility values,
depending on success (see [2] for details, and also algorithm 2
which instantiates the principle).

3. SEPARABLE NES
Multi-variate normal distributions arguably constitute the

most important class of search distributions in modern evo-
lution strategies. However, adapting the full covariance ma-
trix of the search distribution can be disadvantageous, par-
ticulary in high-dimensional search spaces, for two reasons.

For many problems it can be safely assumed that the com-
putational costs are governed by the number of fitness eval-
uations. This is particularly true if such evaluations rely
on expensive simulations. However, for applications where
fitness evaluations scale gracefully with the search space di-
mension, the O(d3) exponential NES update (due to the ma-
trix exponential2) can dominate the computation. One such
application is the evolutionary training of recurrent neural
networks (i.e., neuroevolution), where the number of weights
in the network can grow quadratically with the number of
neurons n, resulting in a complexity of O(n6) for a single
NES update.

A second reason not to adapt the full covariance matrix
in high dimensional search spaces is sample efficiency. The
covariance matrix has d(d+1)/2 ∈ O(d2) degrees of freedom,
which can be a huge number in large dimensions. Obtaining
a stable estimate of this matrix based on samples may thus
require many (costly) fitness evaluations, in turn requiring
very small learning rates. As a result, the algorithm may
simply not have enough time to adapt its search distribution
to the problem with a given budget of fitness evaluations.
In this case, it may be advantageous to restrict the class
of search distributions in order to adapt at all, even if this
results in a less steep learning curve in the (then practically
irrelevant) limit of infinitely many fitness evaluations.

The only two distinguished parameter subsets of a multi-
variate distribution that do not impose the choice of a par-
ticular coordinate system onto our search space are the ‘size’
of the distribution, corresponding to the (2d)-th root of the
determinant of the covariance matrix, and its orthogonal
complement, the covariance matrix normalized to constant
determinant (corresponding to all remaining shape proper-
ties of the distribution, but size) [2]. The first of these can-
didates results in a standard evolution strategy without co-
variance adaptation at all, which may indeed be a viable
option in some applications, but is often too inflexible. The
set of normalized covariance matrices, on the other hand, is
not interesting because it is clear that the size of the distri-
bution needs to be adjusted in order to ensure convergence
to an optimum.

Thus, it has been proposed to give up some invariance
properties of the search algorithm, and to adapt the class
of search distribution with diagonal covariance matrices in

2Even if we sacrifice the exponential parameterization
(which leads to other problems, see [3]) to perform more
efficient updates, a cost of O(d2) is unavoidable, already for
sampling offspring.

some predetermined coordinate system [9]. Such a choice
is justified in many applications where a certain degree of
independence can be assumed among the fitness function pa-
rameters. It has even been shown in [9] that this approach
can work surprisingly well even for highly non-separable fit-
ness functions.

Restricting the class of search distributions to Gaussians
with diagonal covariance matrix corresponds to restricting
a general class of multi-variate search distributions to sepa-
rable distributions

p(z | θ) =
d∏

i=1

p̃(zi | θi) ,

where p̃ is a family of densities on the reals, and θ = (θ1, . . . , θd)
collects the parameters of all of these distributions. In most
cases these parameters amount to θi = (µi,σi), where µi ∈
R is a position and σi ∈ R

+ is a scale parameter (i.e.,
mean and standard deviation, if they exist), such that zi =
µi + σi · si ∼ p̃(· |µi,σi) for si ∼ p̃(· | 0, 1).

Algorithm 1: Separable NES (SNES)

input: f , µinit, σinit

repeat
for k = 1 . . . λ do

draw sample sk ∼ N (0, I)
zk ← µ+ σsk
evaluate the fitness f(zk)

end
sort {(sk, zk)} with respect to f(zk) and compute
utilities uk

compute gradients
∇µJ ←

∑λ
k=1 uk · sk

∇σJ ←
∑λ

k=1 uk · (s
2
k − 1)

update parameters
µ← µ+ ηµ · σ · ∇µJ
σ ← σ · exp(ησ/2 · ∇σJ)

until stopping criterion is met ;

Obviously this allows us to sample new offspring in O(d)
time. Since the adaptation of each component’s parameters
is independent, the strategy update step also takes onlyO(d)
time. At the same time the number of parameters in the
covariance matrix shrank from d(d + 1)/2 ∈ O(d2) to d ∈
O(d), which allows us to increase the learning rate ησ by
a factor of d/3 ∈ O(d). This choice has proven robust in
practice [9].

Thus, the sacrifice of invariance, amounting to the selec-
tion of a distinguished coordinate system, allows for a linear
time algorithm (per individual), that still maintains a rea-
sonable amount of flexibility in the search distribution, and
allows for a considerably faster adaptation of its parameters.
The resulting NES variant, called separable NES (SNES), is
illustrated in algorithm 1 for Gaussian search distributions.
Note that each of the steps requires only O(d) operations.
In the next section we extend this algorithm to other search
distributions, without affecting its computational complex-
ity.

4. HEAVY-TAILED NES
Natural gradient ascent and ‘vanilla’ gradient ascent in

natural coordinates provide two equivalent views on the work-
ing principle of NES. In this section we introduce yet another



interpretation, with the goal to extend NES to heavy-tailed
distributions, in particular distributions with infinite vari-
ance, like the Cauchy distribution. The problem posed by
these distributions within the NES framework is that they do
not induce a Riemannian structure on the parameter space
of the distribution via their Fisher information, which ren-
ders the information geometric interpretation of natural co-
ordinates and natural gradient ascent invalid.

The most important types of search distributions have
strong invariance properties, this includes multi-variate and
separable heavy-tailed distributions. In this still very gen-
eral case the NES principle can be derived solely based on
invariance properties, without ever referring to information
geometric concepts.

The direction of the gradient ∇θJ(θ) depends on the in-
ner product 〈·, ·〉 in use, corresponding to the choice of a
coordinate system or an (orthonormal) set of basis vectors.
Thus, expressing a gradient ascent algorithm in arbitrary
coordinates results in (to some extent) arbitrary and often
sub-optimal updates. NES resolves this dilemma by rely-
ing on the natural gradient, which corresponds to the dis-
tinguished coordinate system (of the tangent space of the
family of search distributions) corresponding to the Fisher
information metric.

The natural coordinates of a multi-variate Gaussian search
distribution turn out to be those local coordinates w.r.t.
which the current search distribution has zero mean and
unit covariance. This coincides with the coordinate system
in which the invariance properties of multi-variate Gaussians
are most apparent. This connection turns out to be quite
general. We exploit this property systematically and apply
it to distributions with infinite (undefined) Fisher informa-
tion.

4.1 Groups of Invariances
The invariances of a search distribution can be expressed

by a group G of (affine) linear transformations. Typically,
G is a sub-group of the group of orthogonal transformations
(i.e., rotations) w.r.t. a local coordinate system. For exam-
ple, let q : Rd → R

+
0 be the density of a rotation symmetric

distribution (e.g., a Gaussian), then

p(z |µ,A) =
1

det(A)
· q

(
A−1(z− µ)

)

with µ ∈ R
d and A ∈ R

d×d, det(A) 6= 0, is the family
of corresponding multi-variate distributions. Let G(µ,A) be
the group of invariances of p(z |µ,A), that is, G(µ,A) ={
g
∣∣ p(g(z) |µ,A) = p(z |µ,A)∀z ∈ R

d
}
. We have G(0,I) =

O〈·,·〉(R
d) =

{
g
∣∣ 〈g(z), g(z′)〉 = 〈z, z′〉 ∀z, z′ ∈ R

d
}
, where

the right hand side is the group of orthogonal transforma-
tions w.r.t. an inner product, defined as the (affine) linear
transformations that leave the inner product (and thus the
properties induced by the orthonormal coordinate system)
invariant. Here the inner product is the one w.r.t. which the
density q is rotation invariant. For general (µ,A) we have
G(µ,A) = h ◦ G(0,I) ◦ h

−1, where h(z) = Az+ µ is the affine
linear transformation corresponding to the current search
distribution. In general, the group of invariances is only a
subgroup of an orthogonal group, e.g., for a separable dis-
tribution q, G is the finite group generated by coordinate
permutations and flips.

We argue that it is most natural to rely on a gradient or
coordinate system which is compatible with the invariance

properties of the search distribution in use. In other words,
we should ensure the compatibility condition

G(µ,A) ⊂ O〈·,·〉(R
d)

for the inner product 〈·, ·〉 with respect to which we compute
the gradient ∇J . This condition has a straight-forward con-
nection to the natural coordinate system deduced in [3]: It
is fulfilled by performing all updates in local coordinates,
in which the current search distribution is expressed by the
density p(· | 0, I) = q(·). In these coordinates, the distribu-
tion is already rotation symmetric by construction (or sim-
ilar for separable distributions), where the rotation symme-
try is defined in terms of the ‘standard’ inner product of
the local coordinates. Local coordinates save us from the
cumbersome explicit construction of an inner product that
is left invariant by the group G(µ,A).

Note, however, that q(z) and q(σ ·z) have the same invari-
ance properties. Thus, the invariance properties make only
the gradient components ∇µJ and ∇BJ unique, but not the
scale component∇σJ . Luckily this does not affect the (1+1)
hill-climber variant of NES, which relies on a success-based
step size adaptation rule. Also note that this derivation
of the NES updates works only for families of search dis-
tributions with strong invariance properties, while natural
gradient ascent extends to much more general distributions,
such as mixtures of Gaussians.

Algorithm 2: (1+1)-NES with multi-variate Cauchy
search distribution

input: f , µinit, Σinit = A>A
fbest ← −∞
repeat

draw sample
s ∼ N (0, I)
r ∼ πCauchy(0, 1)
z ← rA>s+ µ

evaluate the fitness f(z)

(s1, s2)← (0, s)
(z1, z2)← (µ, z)

calculate log-derivatives

∇M log π (zk|θ)←
1

2

(
d+ 1

r2 + 1
sks

>
k − I

)

if f(z) > fbest then
update mean µ← z
fbest ← f(z)
u← (−4, 1)

else
u← ( 4

5
, 0)

end

∇MJ ← 1
2

∑2
k=1∇M log π (zk|θ) · uk

A← A · exp
(
1
2
ηA∇MJ

)

until stopping criterion is met ;

4.2 Cauchy Distributions
Given these results, NES, formulated in local coordinates,

can be used with heavy-tailed search distributions without
modification. This applies in particular to the (1+1) hill-
climber, which is the most attractive choice for heavy-tailed
search distributions, because when the search distribution
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Figure 1: Comparison of the performance of xNES (red circles) and SNES (blue triangles) on a subset of the
unimodal BBOB benchmark functions. The log-log plots show the median number of evaluations required
to reach the target fitness 10−8, for problem dimensions ranging from 2 to 16 (over 20 runs). The inverted
triangles indicate cases where SNES converged to the optimum in less than 90% of the runs.

converges to a local optimum and a better optimum is lo-
cated by a mutation, then averaging this step over the off-
spring population will usually result in a sub-optimal step
that stays within the same basin of attraction. In contrast, a
hill-climber can jump straight into the better basin of attrac-
tion, and can thus make better use the specific advantages
of heavy-tailed search distributions.

Of course, the computation of the vanilla gradient changes
depending on the distribution in use. Once this gradient is
computed in the local coordinate system respecting the in-
variances of the current search distribution, it can be used
for updating the search parameters µ and B without further
corrections like multiplying with the (in general undefined)
inverse Fisher matrix. For the multi-variate Cauchy distri-
bution we have

q(s) =
Γ((d+ 1)/2)

π(d+1)/2
· (‖s‖2 + 1)−(d+1)/2 ,

which results in the gradient components

∇δJ =
d+ 1

‖s‖2 + 1
· s

∇MJ =
d+ 1

2 · (‖s‖2 + 1)
· ss> −

1

2
· I .

The full NES hill-climber with multi-variate Cauchy muta-
tions is provided in algorithm 2.

5. EXPERIMENTS
We now proceed to empirically validate the new algo-

rithms. In the first part of this section we evaluate the
performance of SNES on a whole collection of benchmarks.
Then we address the question of global optimization and to
what degree a heavy-tailed search distribution (namely mul-
tivariate Cauchy) can alleviate the problem of getting stuck
in local optima.

If not mentioned otherwise, in the setup of the algorithm
we use the following parameters: population size λ = 4 +

b3 log(d)c, learning rates ηµ = 1, ησ = ηB = ηA = (9+3 log(d))

5d
√

d

(all in line with [3]) and the increased ησ = (3+log(d))

5
√

d
for

SNES (see section 3). The five algorithm variants that are
evaluated below are xNES (as in [3]), (1+1)-NES-Gauss (as
in [2]), (1+1)-NES-Cauchy (as in algorithm 2), SNES (as in
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Figure 2: Median number of evaluations required to
solve the non-Markovian pole-balancing task (over
100 runs), with increasing number of neurons (and
corresponding number of weights). We limited the
runtime to one hour per run, which explains why
no results are available for xNES on higher dimen-
sions (cubic time complexity). The fact that SNES
quickly outperforms xNES, also in number of func-
tion evaluations, indicates that the benchmark is
(sufficiently close to) separable, and it is unneces-
sary to use the full covariance matrix. For reference
we also plot the results of the previously best per-
forming algorithm CoSyNE [4] (population size 40).

algorithm 1) and its hill-climber variant (1+1)-SNES (pseu-
docode not shown). A Python implementation of all these
is available within the open-source machine learning library
PyBrain [10].

5.1 Separable NES
First, we evaluate SNES on a subset of the unimodal

benchmark problems from the BBOB framework [7, 6]. These
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Figure 3: Performance of (1+1)-SNES on the Lennard-Jones benchmark for atom clusters ranging from 3 to
67 atoms (corresponding to problem dimensions d of 9 to 201). The yellow diamonds indicate the best known
configurations (taken from [13]), and the box-plots show upper and lower quartile performance (the red line
being the median) of SNES, over 100 runs. The inset is a zoom on the behavior in small dimensions, where
SNES succeeds in locating the true optimum in a large fraction of the runs.

benchmarks test the capability of SNES to descend quickly
into local optima, a key property of most evolution strate-
gies. The results in figure 1 show how SNES dominates when
the function is separable (f1 through f6), and converges
much slower than xNES in non-separable benchmarks, as
expected. In particular, on the rotated ellipsoid function
f10, which is designed to make separable methods fail, SNES
requires 4 orders of magnitude more evaluations. In dimen-
sions d > 2 it fails completely because the resolution of
double precision numbers is insufficient for this task.

In the second experiment, we show how SNES is well-
suited for neuroevolution problems because they tend to
be high-dimensional, multi-modal, but with highly redun-
dant global optima (there is not a unique set of weights
that defines the optimal behavior). In particular, we run it
on non-Markovian double pole balancing, a task which in-
volves balancing two differently sized poles hinged on a cart
that moves on a finite track. The single control consists of
the force F applied to the cart and observations include the
cart’s position and the poles’ angles, but no velocity informa-
tion, which makes this task partially observable. The con-
troller is represented by a simple recurrent neural network,
with three inputs, (position x and the two poles’ angles β1

and β2), and a variable number n of tanh units in the output
layer, which are fully connected (recurrently), resulting in a
total of n(n+3) weights to be optimized. The activation of
the first of these recurrent neurons directly determines the
force to be applied. We use the implementation found in
[10]. An evaluation is considered a success if the poles do
not fall over for 100, 000 time steps.

In practical scenarios we cannot know the best network
size a priori, and thus the conservative is choice of overesti-
mating the required number of neurons. An algorithm that
graciously scales with problem dimension is therefore highly
desirable, and we find that SNES (unlike xNES) is exhibit-
ing precisely that behavior.We experimented with recurrent

Figure 4: Illustration of the best configuration found
for 13 atoms (symmetric, left), and 22 atoms (asym-
metric, right).

layers of sizes n = 1 to n = 32 (corresponding to between
4 and 1120 weights). Figure 2 shows the results, which are
in fact state-of-the-art for SNES, outperforming the previ-
ously best algorithm CoSyNE [4] by a factor 2 on small and
medium dimensions.

As our third benchmark for illustrating the performance
of (1+1)-SNES we chose the widely studied problem of min-
imizing the Lennard-Jones atom cluster potentials, which is
known for being extremely multi-modal [13]. It consists of
finding that configuration of N atoms which minimizes the
potential energy function

ELJ ∝
∑

i,j≤N

[(
1

rij

)12

−

(
1

rij

)6
]

,

where rij is the distance between atoms i and j (see also
figure 4 for an illustration). For the setup here, we initial-
ized µ near 0 the step-sizes at σi = 0.01 to avoid jumping
into a local optimum in the fist generation. The results are
plotted in figure 3, showing how SNES scales convincingly



10 0 10 20

20

0

20

Figure 5: Contour plot of the 2-dimensional
Double-Rosenbrock function, illustrating its decep-
tive double-funnel structure. The global structure
leads the search to the local optimum ((14,14), red
circle), whereas the true optimum ((-11,-11), black
square) is located in the smaller valley.

to hundreds of parameters (each run up to 500d function
evaluations).

5.2 Heavy Tails and Global Optimization
We illustrate the power of using a heavy-tailed search dis-

tribution on the synthetic benchmark function

f2Rosen(z) = min

{
f8(−z− 10), 5 + f8

(
z− 10

4

)}
,

where f8 is the well-known Rosenbrock function [7]. Our
variant has a deceptive double-funnel structure, with a large
valley containing a local optimum and a smaller but deeper
valley containing the global optimum. The global structure
will tend to guide the search towards the local optimum (see
also figure 5 for an illustration). For this experiment, the
search distribution is initialized at mid-distance between the
two optima, and the initial step-size σ is varied. Figure 6
shows the proportion of runs that converge to the global op-
timum, instead of the (easier to locate) local one, comparing
for a multivariate Cauchy and Gaussian (1+1)-NES.

The last experiment uses the following ‘random-basin’ bench-
mark function:

frb(z) = 1−
9

10
r
(⌊z1

10

⌋
, . . . ,

⌊zd
10

⌋)

−
1

10
r(bz1c, . . . , bzdc) ·

d∏

i=1

sin2(πzi)
1

20d

to investigate the degree to which a heavy-tail distribu-
tion can be useful when the objective function is highly
multi-modal, but there is no global structure to exploit.
Here r : Zd → [0, 1] is a pseudo-random number generator,
which approximates an i.i.d. uniformly random distribution
for each tuple of integers, while still being deterministic, i.e.,
each tuple evaluates to the same value each time. In prac-
tice, we implement it as a Mersenne twister seeded with the
hash-value of the integers. Further, to avoid axis-alignment,
we rotate the function by multiplying with an orthonormal
random d× d matrix (as in [14]).

One interesting property of this function is that each unit-
sized hypercube is an “attractor” of a local optimum. Thus,
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Figure 6: Empirical success probabilities (of locating
the global optimum), evaluated over 200 runs on
the f2Rosen benchmark, while varying the size of the
initial search distribution. The results clearly show
the robustness of using a heavy-tailed distribution.

Figure 7: Contour plot of (one instantiation of) the
deceptive global optimization benchmark function
frb, in two dimensions. It is constructed to contain
local optima in unit-cube-sized spaces, whose best
value is uniformly random. In addition, it is su-
perimposed on 10d-sized regional plateaus, also with
uniformly random value.

while sampling points from one hypercube, an ES will con-
tract its search distribution, making it harder to escape from
that local optimum. Furthermore, the values of the local op-
tima are uniformly distributed in [0, 1], and do not provide
a systematic global trend (in contrast to the Rastrigin func-
tion). If the optimization results in a value of, say, 0.11,
then we know that only 11% of the local optima are better
than this.

Figure 8 shows the results: not surprisingly, employing
the Cauchy distribution for search permits longer jumps,
and thus enables the algorithm to find better local optima
on average. The Cauchy version outperforms the Gaussian
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Figure 8: Value of the local optimum discovered on
frb (averaged over 250 runs) as a function of prob-
lem dimension. Since the locally optimal values are
uniformly distributed in [0, 1], the results can equiv-
alently be interpreted as the top percentile in which
the found local optimum is located. E.g., on the 4-
dimensional benchmark, NES with the Cauchy dis-
tribution tends to find one of the 6% best local op-
tima, whereas employing the Gaussian distribution
only leads to one of the best 22%.

version by a factor 2-3, depending on the problem dimen-
sion. Note that the improvement (for both distributions) is
due to each unit-cube having exponentially more neighbor-
cubes as dimension increases, and therefore an increasing
chance that a relatively small jump will reach a better local
optimum. At the same time, the adaptation of the step size
is slowed down by the dimension-dependency of the learning
rate, which leaves the algorithm more time to explore before
it eventually converges into one of the local optima.

6. CONCLUSION
We addressed two shortcomings of NES by deriving vari-

ants that employ different search distributions. First we
introduced separable NES (SNES), reducing the complex-
ity of NES from O(d3) to O(d), and making it applicable
to problems of previously intractable dimensionality. We
showed its performance improvement on separable bench-
mark functions, demonstrated how it finds lowest-energy
structures on high-dimensional Lennard-Jones atom clus-
ters, and achieved state-of-the-art results on the non-Markovian
double-pole benchmark. Second, we developed a new, equiv-
alent formulation of NES based on invariances instead of
the natural gradient. This allowed us to generalize NES
to heavy-tailed distributions, even if their variance is unde-
fined. The resulting NES variant maintains a multi-variate
Cauchy search distribution, and we validated that it does in-
deed find better local optima (and more often than its Gaus-
sian counterpart) on two deceptively multi-modal bench-
marks.
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