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Abstract. Applied to certain problems, neuroevolution frequently gets
stuck in local optima with very low fitness; in particular, this is true for
some reinforcement learning problems where the input to the controller
is a high-dimensional and/or ill-chosen state description. Evidently, some
controller inputs are “poisonous”, and their inclusion induce such local
optima. Previously, we proposed the memetic climber, which evolves neu-
ral network topology and weights at different timescales, as a solution to
this problem. In this paper, we further explore the memetic climber, and
introduce its population-based counterpart: the memetic ES. We also ex-
plore which types of inputs are poisonous for two different reinforcement
learning problems.

1 Introduction

It stands to reason that when applying evolution methods to reinforcement
learning problems, providing more information to the controller rather than less
should make the problem easier rather than harder to solve. Intuitively, if those
parts of the state description that are actually necessary to solve the problem
(e.g. the position of the agent relative to the goal) were available, then a sensible
learning algorithm ought to disregard any redundant information (e.g. the po-
sition of an unrelated agent relative to the goal, a random variable, or relevant
aspects of the system state represented in the wrong scale or frame of reference).
This assumption is not challenged by most existing reinforcement learning bench-
marks, since they provide the controller with only a few well-chosen variables as
inputs.

For problems where the best state representation is not immediately obvious,
the above assumption is often wrong. In many cases, providing extra information
to the controller results in lower fitness. For example, Lucas and Togelius [1]
found that removing an input representing an angle to a way point was necessary
for successful navigation to evolve for an holonomic agent; Igel [2] found that the
CMA algorithm found good pole-balancing controllers much faster when a bias
input was removed; and in the domain of helicopter control, De Nardi et al. [3]
found that the network controlling yaw and the network controlling the pitch
and roll could not share any inputs, lest evolution never found good controllers.
In these examples, the presence of certain “poisonous” irrelevant inputs induces
local minima in the fitness landscape—evolution exploits the poisonous inputs
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to quickly find controllers that score better than random but cannot be built
upon to find full solutions. For evolutionary reinforcement learning to be useful
in real-world problems where the best state description is not known in advance,
we need algorithms that can identify those state variables that should be ignored.
Such algorithms will likely operate on more than one timescale, with one process
learning what to ignore and another process learning the policy.

In a recent paper, we introduced the memetic climber [4], a variation of the
simple hill-climber that searches for neural network topology and weights at
different time scales; each topology mutation is accepted only if it is better than
its predecessor after a brief period of local search in weight space. We found that
on a version of a simulated car racing task which used a carefully selected set
of inputs, the memetic climber performed slightly better than a standard, non-
memetic hill-climber. However, when extra, potentially useful, but redundant
inputs were added, the standard hill climber failed to find good controllers,
while the memetic climbers performed almost as well as with the smaller set on
inputs. In other words, the memetic climbers learned which inputs to ignore.

A number of algorithms have been proposed that evolve both topologies and
weights of neural networks at the same time (see [5] for an overview). Most of
these are not memetic algorithms, and treat topology search and weight search
as a single search process, on a single time scale. An exception is the EANT2
algorithm [6], which treats topology and weight search as separate but interde-
pendent processes: it evolves topologies with a simple ES and weights with the
CMA-ES. Memetic algorithms have previously been used to efficiently search
the space of neural network weights; see [7] for an example.

This paper continues our exploration of when and why extra inputs thwart
the learning of effective control policies, and how memetic search in weight and
topology space can counter this phenomenon. There are three main objectives:
(1) to investigate the effects of changing the number of local search steps per
global mutation in the memetic climber, (2) to compare the effects of redundant
inputs with and without information content (irrelevant state descriptions versus
pure noise), and (3) to introduce a population-based version of the memetic
climber, the memetic ES, and compare it with other evolutionary algorithms.

2 Neural Memetic Search Algorithms

In this section, we describe five memetic search algorithms for neural network
weights and topologies. The first two, originally presented in [4], use a single
search point, while the other three are memetic extensions to evolutionary strate-
gies. All of the algorithms are used to search the space of masked networks: in
addition to the connection weights, the network chromosomes contain a bit-mask
with a bit for each connection that determines whether or not the corresponding
connection is active in the network.

There are two types of mutation operations that are applied to the masked
network representations:

– weight mutation adds values drawn from a Gaussian distribution to all of
weights.
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Algorithm 1: Memetic Climber (n,m)

Initialize (champion)1

fchamp ← Evaluate (champion)2

for i=1 to n do3

contender ← champion4

TopologyMutate (contender)5

for j=1 to m do6

fcntder ← Evaluate (contender)7

subcontender ← contender8

WeightMutate (subcontender)9

fsubcnt ← Evaluate (subcontender)10

if fsubcnt >= fcntdr then11

contender ← subcontender12

end13

end14

fcntder ← Evaluate (contender)15

if fcntder >= fchamp then16

champion ← contender17

end18

end19

– topology mutation iterates over all bits in the mask, flipping any bit with
probability p.

When and how often these two operations are used relative to each other, is
the key feature that distinguishes the algorithms presented here.

2.1 Memetic climber

The memetic climber, described in Algorithm 1, can be considered two nested
hillclimbers operating at different timescales, and in different search spaces: a
slow search in topology space (the outer loop, lines 3-19), and a fast search
in weight space (the inner loop, lines 6-14). The algorithm maintains a single
candidate solution, the champion. Each “generation”, a copy of the champion,
the contender, is topology-mutated and then local search is performed in for m

steps. The contender replaces the champion only if its fitness after local search is
higher than or equal to that of the champion. The intuition behind this algorithm
is that by using local weight search to refine new topologies it might be possible
to mitigate the disruptive effect of topology mutation. This is related to the
NEAT algorithm, which affords new topologies “innovation protection” [8].

2.2 Inverse Memetic Climber

The inverse memetic climber works in the same way as the memetic climber
except that the two types of mutation are interchanged (i.e. swapping lines 5
and 9 in Algorithm 1): for every weight mutation, local search is done in topology
space.
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2.3 Memetic ES

The memetic ES, described in Algorithm 2, is one possible combination of the
memetic climber and evolution strategies. At each generation, a small amount of
local search is conducted in weight space for each individual in the population.
The population is then sorted by fitness, and the least fit λ are replaced by copies
of the better fit µ of the population. Finally, all the newly copied individuals are
topology-mutated.

2.4 Inverse Memetic ES

Just as with the inverse memetic climber, the inverse memetic ES is identical to
memetic ES except that the weight and topology mutations (lines 8 and 21) are
swapped.

2.5 Memetic CMA-ES

This algorithm is a version of the memetic climber where the local search (lines
6-14, algorithm 1) uses Covariance Matrix Adaption Evolution Strategy (CMA-
ES) instead of the simple hillclimber. CMA-ES is a method that adapts the
covariance matrix of the problem variables in order to model the fitness landscape
as a multivariate normal distribution that used to generate new search points
(see [9] for a complete description of this algorithm). Our Memetic CMA-ES
is related to the more complex EANT2 algorithm [6] which uses CMA-ES for
weight search and standard ES to search topology.

3 Experiments

Two very different domains were chosen as testbeds for the memetic algorithms
described above: simplerace and non-markovian double pole balancing. The stan-
dard set of controller inputs normally used in these domains provide sufficient
information for the controller to solve the task. In order to evaluate how well
the algorithms learn to ignore irrelevant or redundant information, experiments
were conducted using three different input representations: (1) the standard in-

puts, (2) an extended input set consisting of the standard inputs plus a number
of inputs accurately describing redundant or irrelevant aspects of the state, and
(3) a noise input set consisting of the standard inputs and a number of normally
distributed random variables.

To compare the memetic to the non-memetics approaches, experiments we
also run for standard (non-memetic) (5 + 5) and (50 + 50) evolution strategies,
and as a baseline two versions of random search: one which randomly generates
masks and weight vectors, and one which only generates random weight vectors,
with all mask bits set. Both versions the memetic and inverse memetic ES have
a population size of 10.

The weight mutation for all methods used a Gaussian distribution with mean
0 and standard deviation 0.1 applied to all weights, and the probability of having
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Algorithm 2: Memetic ES(µ,λ,n,m)

Initialize (Population, µ + λ individuals)1

for i=1 to n do2

for j=1 to (µ + λ) do3

contender ← Copy (Population[j])4

fcntndr ← Evaluate (contender)5

for k=1 to m do6

subcontender ← contender7

WeightMutate (subcontender)8

fsubcnt ← Evaluate (subcontender)9

if fsubcnt >= fcntdr then10

contender ← subcontender11

end12

end13

Population[j] ← contender14

Evaluate (Population[j])15

end16

Permute (Population)17

SortOnFitness (Population)18

for j=µ to (µ + λ) do19

population ← Copy (Population[j-λ])20

TopologyMutate (population[j])21

end22

end23

a bit flipped, p, was set to 0.05 for the topology mutation operator. For the
memetic algorithms, all mask bits are initially unset. These two operators are
described in section 2.

3.1 Setup: Simulated Race Car Driving

The simplerace problem involves driving a car in a simple racing simulation in or-
der to reach as many randomly placed waypoints as possible in a limited amount
of time. In addition, the driver must decide which waypoint to target in order to
beat an opponent car that tries to reach the same waypoints, giving the game a
strategic element. The game has previously been used as a benchmark problem
in several papers, and in two competitions associated with recent conferences3.

For this domain, the standard input set consists of eight values: a bias term,
the speed of the car, angle and distance to the current and next way point and
to the next vehicle. The extended input set consists of the positions of both the
controlled and the opponent car in Cartesian space, the speed of the opponent
car, and the orientation and angular velocity of the controlled car in Cartesian
coordinates. This information, while correct, should be significantly harder than
the core inputs to interpret, due to the need for coordinate transformations. The

3 A description of the problem is available in [10], and source code can be downloaded
from http://julian.togelius.com/cec2007competition.
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Table 1. Results for Memetic Climber with different numbers of local,

weight search steps. Best fitness found after 20000 episodes for simplerace, aver-
aged over 50 runs.

Local steps Standard Extra Cartesian Extra random

2 13.83 12.81 13.27
5 13.79 12.71 13.12
10 13.85 13.06 13.33

25 13.51 12.90 13.15
50 13.86 11.66 12.96
100 13.46 9.50 12.76
250 13.25 7.80 11.74
500 11.19 6.99 10.65

noise input set are seven inputs that are set to independent values drawn from
a Gaussian distribution with mean 0 and standard deviation 1.

Each algorithms was run 50 times, and 20, 000 multilayer perceptrons (MLPs)
with the tanh transfer function and six hidden units were evaluated in each run.
For the memetic climber, eight different settings (2, 5, 10, 25, 50, 100, 250, 500)
for the number of local search steps, n, (weight mutations) per global (topology
mutations) were tried.

3.2 Results: Simulated Race Car Driving

From Table 1, we can see that when the number of local steps per global mutation
is low, the memetic climber finds good controllers under all three input condi-
tions; for the simplerace problem, the best setting seems to be 10 local search
steps, though everything under 50 is good. When using hundreds of search steps,
worse solutions are found under all input conditions, though this effect is much
more marked under the extra Cartesian input condition.

In Table 2 the results for the best memetic climber configuration are com-
pared with a number of other search algorithms. The most striking result is that
for every algorithm, the controllers found using standard inputs are better than
those found using the extra random inputs, which in turn are better than those
found using the extra Cartesian inputs. These differences can be minor, as for
the memetic climber, or drastic, as for the (50 + 50) ES.

None of the algorithms that only search weight space manage to find good
controllers using the extra Cartesian inputs, e.g. the (50 + 50) ES finds the
best controllers (probably close to the optimum for reactive controllers) for the
standard inputs, but performs extremely poorly with the extra Cartesian inputs.
This effect can be seen even for random search, where random search in weight
space performs worse than random search in topology and weight space under
the standard condition, much worse under the extra random condition, and very
much worse under the extra Cartesian condition.

Using the standard and extra random random, all the population-based algo-
rithms outperform all non-population-based algorithms. With standard inputs,
the ESs slightly outperform the memetic ESs, and under the extra random con-
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Table 2. Results for simplerace task. Best fitness found after 20000 episodes for
simplerace, averaged over 50 runs.

Algorithm Standard Extra Cartesian Extra random

Random search (mask/weights) 13.44 9.08 11.15
Random search (weights only) 10.66 1.18 7.36
Hillclimber 12.82 0.56 10.78
Memetic climber 10-local 13.85 13.06 13.33
Inverse memetic climber 10-local 13.85 12.76 13.52
(5+5) ES 15.47 0.94 13.93
(50+50) ES 16.23 1.30 14.14
(5+5) Memetic-ES 15.36 14.02 14.90
(5+5) Inverse Memetic-ES 15.45 14.51 15.18

dition the opposite is the case; however, under the extra Cartesian condition the
difference is dramatic. Overall, the memetic ESs are the best algorithms of those
compared for finding simplerace controllers. (The differences in performance be-
tween standard and inverse versions are rather small and unsystematic.)

3.3 Setup: Non-Markovian Double Pole Balancing

In this task, two poles, sitting side by side, hinged to a wheeled cart must be
balanced simultaneously by applying a scalar force at regular intervals such that
they are balanced indefinitely and the cart stays within the track boundaries.
Unlike the standard inverted pendulum problem which is nearly linear around
the unstable equilibrium point, the double pole system is highly non-linear due
to the interacting between the poles. In addition, in this non-Markovian version,
the controller only recieves three of the six state variable as standard input: the
distance of the cart from the center of the track, and the angle of each pole from
vertical. Since the velocity of the cart, and the angular velocities of the poles are
not provided to the controller, it must compute them from previous inputs usin
internal state (memory) in order to balance the poles (see [11] for equations of
motion and system parameters).

For this problem, the extended input set consists of the four Cartesian co-
ordinates of the tips of both poles. The noise input set consist of four Gaussian
noise sources as in the simplerace setup. In order to compute the velocities, the
controllers were represented by Elman-style simple recurrent neural networks
with sigmoid transfer functions. Each algorithm was run 30 times, and each
run lasted until the best network could balance the pole for 50, 000 time steps,
or until 30, 000 networks had been evaluated, whichever occured first. For this
problem, we also compare our results to CMA-ES.

3.4 Results: Non-Markovian Double Pole Balancing

Table 3 summarizes the results for the pole balancing experiments. The variance
in the results of each algorithms for different sets of inputs is more pronounced
on this task compared to simplerace. In fact, many of the algorithms fail to find
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Table 3. Comparison of methods using different input sets for non-

Markovian pole balancing task. For each type of input: the first column (evals.) is
the average number of pole balancing attempts required to solve the task; the second
column (%solved) indicates the percentage of the runs that were able to solve the task;
the third column (fail. fit.) is the average final fitness for the unsuccessful runs. The
number of local search steps per global mutation is 100 for the memetic climbers, 50
for memetic-ESs and 500 for the memetic CMA-ES. Each method was run 50 times.

Algorithm Standard Extra Cartesian Extra random

evals. %solved fail. fit. evals. %solved fail. fit. evals. %solved fail. fit.

Random search — 0 60 — 0 60 — 0 43
Random masks — 0 56 — 0 60 — 0 49
Hillclimber — 0 47 — 0 45 — 0 38
(5+5) ES — 0 46 — 0 43 — 0 39
(50+50) ES — 0 40 — 0 40 — 0 38
CMA-ES 3658 90 736 3421 90 523 — 0 92
Memetic CMA-ES 2223 39 497 21733 39 109 29000 5 162
Memetic climber 1736 17 444 8005 2 324 — 0 64
Inverse memetic 2900 2 76 — 0 109 — 0 47
Memetic-ES 1950 5 240 20500 5 147 — 0 862

Inv. Memetic-ES — — 175 — 0 112 — 0 51

controllers that can balance both poles for the required 50, 000 time steps. This
is partly because, for run time reasons, we have chosen to cut off the search
very early, at 30, 000 evaluations. This is roughly ten times more than the best
algorithm needs, but might be too short for some other algorithms.

One result that immediately stands out is that CMA-ES (along with memetic
CMA-ES) is much better than all of the other algorithms using both the standard
and extra Cartesian inputs. This is to be expected as CMA-ES is one of the
most efficient algorithms for this particular problem to date [11]. However, the
performance of CMA-ES drops sharply under the extra random condition–from
90% to 0% successful runs.

In fact, the performance of all algorithms degrades dramatically when the
noisy inputs are present. The only algorithms that perform better than random
search in this case are the memetic CMA-ES (which sometimes solves the prob-
lem) and the memetic ES (which does not solve the problem, but has a relatively
good average fitness for failed runs).

Even using the standard and extra Cartesian inputs, the normal memetic
algorithms clearly outperform the non-memetic algorithms, including the ES
(but not CMA-ES). The inverse memetic algorithms perform worse than the
normal memetic algorithms under all conditions.

4 Discussion

Pole balancing and simplerace are quite different problems with apparently very
different search spaces, for all three input conditions. For the simplerace problem,
random search does relatively well, and the observed performance differences
between algorithms is at the upper end of the fitness range. For pole balancing,



9

almost the opposite is the case: most algorithms spend a long time trying very
unfit solutions and some, including the standard ES, do not perform noticeably
better than random search within the allotted number of evaluations.

The search spaces of the two problems are also transformed in different ways
by the added inputs. The extra Cartesian inputs make the simplerace problem
hard to solve for algorithms that search only for weights, but have little effect
on pole balancing. This is possibly due to the fact that the Cartesian inputs
make the simplerace search space deceptive: algorithms easily find modestly fit
solutions that depend on the extra inputs, but are far from truly solving the task.
No such effect seems to exist for the extra Cartesian inputs for pole balancing.

Adding random extra inputs has little effect on the simplerace problem, while
it completely transforms the pole balancing problem, making the search much
harder for all tested algorithms. A simple explanation for this is that noise is
more deleterious for an unstable system like the double pole balancer, so that the
connections from the random inputs have to be masked off or made very close
to zero in order to prevent them from perturbing the system. The simplerace

environment, however, does not exhibit this kind of instability, so that steering
the car is more robust to disturbances (i.e. each action can, in principle, correct
for each disturbance without the system diverging).

For both problems, memetic search of topologies and weights was not only
competitive with algorithms that searched only for weights using standard in-
puts, but also significantly outperformed them when extra “distracting” inputs
were provided.

The decrease in evolvability in the presence of poisonous inputs is not due
to the increased dimensionality of the input or search space. This is clear from
the fact that, for both problems, evolvability decreased only very slightly in the
presence of non-poisonous inputs, whereas the input dimensionality is identical.
Further experiments (omitted due to space constraints) have shown that the ef-
fects of poisonous inputs persist when replacing MLPs with linear filters of much
lower dimensionality. See also the experiments in chapter 7.2 of [10], which sug-
gest that increasing the dimensionality of the search space (through increasing
the size of the hidden layer) actually increases evolvability in simplerace.

In simplerace, random weight and topology search reached lower fitness when
subjected to the noise inputs than under the other two conditions, but perfor-
mance did not decrease as drastically as it did for the other search algorithms.
This suggests that poisonous inputs decrease evolvability both by reducing the
portion of the search space which contains good solutions, and by making the
search space more deceptive. The poor performance of random search on pole-
balancing prevents us from drawing similar conclusions for that domain.

It is plausible that other topology and weight-evolving algorithms are equally
capable of countering poisonous inputs. If so, this provides an important argu-
ment for the use of such algorithms on problems where the best input represen-
tation is not yet known.

5 Conclusions

We have shown that two rather different control learning problems can be made
much harder by adding irrelevant information to the controller inputs, albeit
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which sorts of extra inputs were poisonous depended on the problem. This effect
seems to be independent of the type of neural network used. We have also shown
that these effects can be mitigated to a large extent by using algorithms that
search topology and weight space separately; such algorithms could solve both
benchmark problems in the presence of irrelevant inputs that made them unsolv-
able by the tested non-memetic algorithms. In particular, we have shown that the
memetic climber can be extended to a population-based algorithm in the form
of the memetic ES. This algorithm is competitive with other population-based
algorithms even when the state description is well-selected and well-represented,
and performs better than the memetic climber when presented with problematic
irrelevant inputs. We expect these findings to be highly relevant for cases where
evolutionary reinforcement learning is applied to novel, unanalyzed problems, for
which the correct state description is unknown, so that the best approach is to
feed the controller any information that might or might not be relevant. In other
words, the sort of problems where you would expect evolutionary computation
to be at its greatest advantage.
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