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Abstract. Developing superior artificial board-game players is a widely-
studied area of Artificial Intelligence. Among the most challenging games
is the Asian game of Go, which, despite its deceivingly simple rules, has
eluded the development of artificial expert players. In this paper we at-
tempt to tackle this challenge through a combination of two recent de-
velopments in Machine Learning. We employ Multi-Dimensional Recur-
rent Neural Networks with Long Short-Term Memory cells to handle the
multi-dimensional data of the board game in a very natural way. In order
to improve the convergence rate, as well as the ultimate performance, we
train those networks using Policy Gradients with Parameter-based Ex-
ploration, a recently developed Reinforcement Learning algorithm which
has been found to have numerous advantages over Evolution Strategies.
Our empirical results confirm the promise of this approach, and we dis-
cuss how it can be scaled up to expert-level Go players.

1 Introduction

The two-player board game Go is one of the few such games that have resisted a
panoply of attempts from Artificial Intelligence at building expert-level players.
A broad range of techniques have been used, with some recent successes based
on Monte Carlo Tree Search in combination with Reinforcement Learning (see
e.g. [1, 2]). A large body of research has dealt with the problem using techniques
based on Neural Networks (see e.g. [3] for an overview), and that is also the
approach taken in this paper.

The recently developed Neural Network architecture called Multi-dimensional
Recurrent Neural Networks (MDRNN [4]) has been shown to be highly suited
to domains like board games with multi-dimensional inputs. Unlike typical flat
networks (e.g. multi-layer perceptrons), they can incorporate spacial structure as
well as symmetries in a very natural way. It has also been shown that MDRNNs
trained on small game boards can be scaled up to play well on larger game
boards, even without further training [5].

Training neural networks to play well with direct policy search (i.e. optimizing
the controller network’s parameters) can be done in a number of ways. Recent
work [5] has used state-of-the-art black-box optimization methods like CMA-
ES [6], which unfortunately does not scale well to larger numbers of weights,
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as required for more complex playing behavior. Other methods like Evolution
Strategies (ES [7]) scale better but suffer from a relatively slow convergence. We
therefore train our Go-playing networks using the novel Policy Gradients with
Parameter-based Exploration (PGPE, [8]), which have recently been shown to
be very successful at optimizing the parameters of large Neural Network con-
trollers [9]. PGPE replaces the usual explicit policy of Reinforcement Learning
with an implicit one, defined by a distribution over the parameters of the con-
troller. The fitness for each sequence only depends on one sample and is therefore
less noisy.

In section 2.1 we briefly introduce the game of Go and the simplified variant
used here. The MDRNN architectures are described in Section 2.2, and sec-
tions 2.3. Section 2.4 introduces the three algorithms used (ES, CMA-ES and
PGPE, respectively). Then, in section 3, we train MDRNNs using PGPE, CMA-
ES and ES to play Go, empirically establishing the advantages of PGPE over
ES and CMA-ES. Conclusions and an outlook on future work are presented in
Section 6.

2 Method

In this section we give the needed background on the game of Go, the Neural
Network architectures (MDRNN and MDLSTM) and the training algorithms
(ES, CMA-ES and PGPE).

2.1 Go and Capture Game

For the comparison of the different methods we are using the Capture Game, a
simplified version of the two-player board game Go, a game frequently used to
demonstrate the power of algorithms [1, 11, 12]. In Go, the players alternately
make a move by placing a stone on the board. They aim to capture groups of
opposing stones by enclosing them, see Figure 1 for an illustration. The goal is to
capture more stones and to surround more territory than the opponent (see [3]
for more details).

Fig. 1. A typical situation in Go: the turn is with white (left), who decides to capture
a group of black stones (middle), which is then removed from the board (right).
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The Capture Game, also called Atari-Go or Ponnuki-Go, uses the same rules
as Go, except passing is not allowed and the goal of the game simplified: the first
player who captures at least one opposing stone wins. As this goal is achieved
earlier and with less complex strategies, this variant of Go is often used for
teaching new players.

Go is very interesting in combination with MDRNNs and MDLSTMs, be-
cause scalability is an important issue for board games [10]. The original game
board consists of 361 (19x19) fields, but it is possible to use smaller board sizes
for teaching, or to shorten the game length. As the main strategies stay the
same, it is possible to train on a small board size and then play on bigger ones.
In our case we could use small Neural Networks for the training and afterwards
use scaled versions to play on bigger boards.

2.2 Multi-dimensional Recurrent Neural Networks

Real world data often consists of multi-dimensional data such as videos, speech
sequences or board games (as in our case). To use this data with regular Neural
Networks (NN) the data must be transformed into a vector which leads to the
loss of topological information about the inputs. Multi-dimensional Recurrent
Neural Networks (MDRNN), instead, are capable of using high-dimensional data
without this transformation. Furthermore MDRNNs can be trained on small
problem instances (e.g. board sizes) and then used on bigger ones, a process we
call scaling.

Compared to standard Recurrent Neural Networks (RNN), which can only
deal with a single (time-)dimension, MDRNNs [4] are able to handle multi-
dimensional sequences and were used successfully for vision [13], handwriting
recognition [14] and different applications of Go [5, 15, 10, 3].

In the case of Go, the single time dimension is replaced by the two space
dimensions of the game board. It would be worthwhile to get information about
the whole board. Therefore we introduce swiping hidden layers which swipe
diagonally over the board. The four directions that arise out of the described
situation are the following: D = {↗,↘,↖,↙}.

As exemplary hidden layer we describe the layer h↗, which swipes diagonally
over the board from bottom-left to top-right, in detail. At each position (i, j) of
the board we define the activation h↗(i,j) as a function of the weighted input
in(i,j) and the weighted activations of the previous steps h↗(i−1,j) and h↗(i,j−1)

which leads to:

h↗(i,j) = f(wi ∗ in(i,j) + wh ∗ h↗(i−1,j) + wh ∗ h↗(i,j−1)) (1)

where f is a function (e.g. f = tanh). On the boundaries fixed values are used:
h↗(i,0) = h↗(0,i) = wb. An illustration of h↗ for the game Go can be found in
Figure 2. The output layer consists of the combination of all swiping directions
and could be described as following:

outi,j = g

(∑
�∈D

wo ∗ h�(i,j)

)
(2)
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Fig. 2. On the left hand side the schematic illustration of a MDRNN shows how the
output consists of a swiping hidden layer in one direction. The right hand side illustrates
the output (top) to the corresponding input (bottom). The brighter the square, the
lower the preference to perform the corresponding move (source [5]).

where g is typically the sigmoid function.
With the derived equation we have access to the whole game board. Nev-

ertheless the reach of the access is limited by how fast the activations decay
through the recurrent connections. This problem could be solved by using Long
Short-Term Memory (LSTM) cells [4]. LSTMs are using gates to protect recur-
rent states over the time and where used successfully in [4, 3, 13]. The integration
of LSTMs in MDRNNs by using swiping layers consisting of LSTM cells is called
MDLSTM [5].

2.3 Evolution Strategies

Evolution Strategies (ES) are optimization techniques which are based on the
principles of natural evolution, producing consecutive generations of individuals.
During a generation a selection method is used to select specific individuals which
form the new generation by recombination and mutation [16, 17]. Individuals
can be solution candidates of any problem domain that is fully defined by a
parameter set. Neural Networks (NN) and in this case MDRNNs fall into this
class of problem domains, assuming the architecture of the NN is kept fixed, as
the behavior of the NN is fully defined by its weight matrix.

Adapting continuous paramters by adding normally distributed noise is a typ-
ical mutation method. We use for our comparisons the local mutation operator
and Covariance Matrix Adaption Evolution Strategy (CMA-ES) [6]. CMA-ES
uses a covariance matrix C ∈ Rn×n, where n is the number of parameters for
the mutation and achieves a derandomized correlated mutation. The covariance
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matrix approach is only feasible in relatively low-dimensional problem domains,
because the size of the matrix grows with n2. Here again it is advantageous that
MDRNNs are scalable and that we can train the behavior on smaller instances
of the game and scale it up to the full game size after learning.

2.4 Policy Gradients with Parameter-Based Exploration

In what follows, we briefly summarize [18], outlining the derivation that leads
to PGPE. We give a short summary of the algorithm as far as it is needed for
the rest of the paper.

In the standard Reinforcement Learning (RL) setting a reward signal at
every time step in the Markovian decision process is given. We can associate a
cumulative reward r with each history h by summing over the rewards at each
time step: r(h) =

∑T
t=1 rt. This makes the setting strictly episodic (natural for

board games). In this setting, the goal of RL is to find the parameters θ that
maximize the agent’s expected reward

J(θ) =
∫
H

p(h|θ)r(h)dh (3)

An obvious way to maximize J(θ) is to find ∇θJ and use it to carry out gradient
ascent. Noting that the reward for a particular history is independent of θ, and
using the standard identity ∇xy(x) = y(x)∇x log y(x), we can write

∇θJ(θ) =
∫
H

∇θp(h|θ)r(h)dh =
∫
H

p(h|θ)∇θ log p(h|θ)r(h)dh (4)

PGPE replaces the probabilistic policy commonly used in PG with a probability
distribution over the parameters θ, where ρ are the parameters determining the
distribution over θ. The expected reward with a given ρ is

J(ρ) =
∫
Θ

∫
H

p(h, θ|ρ)r(h)dhdθ. (5)

Noting that h is conditionally independent of ρ given θ, we have p(h, θ|ρ) =
p(h|θ)p(θ|ρ) and therefore ∇ρ log p(h, θ|ρ) = ∇ρ log p(θ|ρ). Substituting this into
Eq. (5) yields Eq. (6) under the notion of several conditionally independencies.

∇ρJ(ρ) =
∫
Θ

∫
H

p(h|θ)p(θ|ρ)∇ρ log p(θ|ρ)r(h)dhdθ (6)

where p(h|θ) is the probability distribution over the parameters θ and ρ are
the parameters determining the distribution over θ. Clearly, integrating over the
entire space of histories and parameters is unfeasible, and we therefore resort to
sampling methods. This is done by first choosing θ from p(θ|ρ), then running
the agent to generate h from p(h|θ):

∇ρJ(ρ) ≈ 1
N

N∑
n=1

∇ρ log p(θ|ρ)r(hn) (7)
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If we assume that ρ consists of a set of means {µi} and standard deviations {σi}
that determine an independent normal distribution for each parameter θi in θ.
some rearrangement gives the following forms for the derivative of log p(θ|ρ) with
respect to µi and σi:

∇µi log p(θ|ρ) =
(θi − µi)

σ2
i

∇σi log p(θ|ρ) =
(θi − µi)2 − σ2

i

σ3
i

, (8)

which can then be substituted into (7) to approximate the µ and σ gradients that
gives the PGPE update rules. We also used the for PGPE standard Symmetric
Sampling (SyS) and the reward normalization commonly used for PGPE. See [18]
for details.

3 Experiments

In this section we compare PGPE with ES and CMA-ES on different board
sizes and with different MDRNNs. For ES we chose a (µ, λ)-strategy where
the µ best individuals are chosen from the whole population which has size λ.
In particular, we applied local mutation and used µ = 5 and λ = 30 which
are standard values. The implementations of the Capture Game, the algorithms
and the Neural Network architectures are available in the open-source Machine
Learning library PyBrain [19].

3.1 Fitness function

The evaluation of the individuals is realized with a Greedy Go Player, imple-
mented in Java using depth-first search. It first checks whether it can capture
and thereby defeat the opponent directly. Otherwise it tries to defend its posi-
tion, by counting the number of liberties for its groups of stones. If one of its
groups only has one liberty, and therefore he would be defeated during the next
opponents move, the Greedy Player tries to enlarge this group. As a third choice
the Greedy player uses a heuristic. Let p and q be the number of liberties of
the weakest group of the Greedy Player and the opponent Player. The Greedy
Player chooses a valid move which maximizes the sum p− q.

By reason of implementation the Greedy Player may pass. As the Capture
Game does not allow this move, we replace it with a random move instead.
Primarily this happens during games with strong opponents.

To calculate the fitness we averaged 40 games which were played against
the Greedy Player. The fitness values are scaled from -1 (individual never wins
against Greedy Player) up to +1 (individual always wins against Greedy Player).

3.2 Network Topology

With the given architectures of MDRNNs (MDLSTMs) it follows that we have 12
(52) parameters which have to be evaluated. We will give a short calculation for



MDRNN Go-Player for PGPE 7

MDRNNs. As mentioned in 2.2 our network consists of four (identical) hidden
layers. The hidden layer is modeled by k neurons. Each neuron is connected
with a weight wo to the output layer and two weights wi to the input layer.
Furthermore the neurons of the hidden layer are fully connected to each other
which leads to k2 weights which we call wh. Additionally we have k weights
wb which are fixed and model the boarders of the recurrent connections. All
together we get k+ 2k+k2 +k = 4k+k2 weights. Taking into consideration the
additional weights of LSTM-cells, a similar reasoning gives us 16k+ 5k2 weights
for MDLSTMs. We decided to use k = 2 neurons, the smallest number that
allows for qualitatively interesting strategies, which leads to 12 (52) weights.
The decisions was taken concerning previous results (see [5]). A larger number
of neurons mostly results in a faster conversion, but increases the complexity of
the network and therefore the calculation time. However, the use of larger board
sizes would make a larger number (up to k = 5) of neurons more feasible.

Fig. 3. Illustration of the four different types of networks. The plots give the fitness
for each of the 12000 episodes as well as the standard deviation and min/max-values
(average over 10 independent experiments).
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3.3 Results

We trained MDRNNs and MDLSTMs for the board sizes 5 and 7. Furthermore
we used 12000 episodes and averaged over 10 independent runs per data point.
Figure 3 illustrates the results. The fitness value determines the average fitness
of a generation. As we can see PGPE mostly converges faster than ES and CMA-
ES. Primarily with the increasing of the number of parameters the advantages
of PGPE towards ES increase.

Nevertheless neither ES nor PGPE has converged within the 12000 episodes
to the maximum fitness value 1. This holds for the best individuals of each
generation, too. In our experiments the best result of a single run of PGPE
converges to 0.5 which is equivalent to a victory rate of 75% (see Figure 3
MDLSTM controller, 5x5 field). That is why ongoing learning could still improve
the results.

Furthermore the use of MDLSTMs leads to better results than MDRNNs.
This strength of MDLSTMs is accompanied by a long training time towards
MDRNNs. Our observations are similar to [4, 5, 3].

Another fact we could read from our resulting plots is a big standard devia-
tion. This observation leads to the suggestion (see section 6) that the standard
meta parameters for PGPE and ES are not optimal for this problem domain
and that meta-parameters that favor a more thorough exploration combined
with longer learning cycles should provide better and more stable results.

4 Discussion

As is common for PGPE, the results of 3.3 start off with the rather slow phase
of searching for the attractor of the global optima. This gives the PGPE curves
the typical S-shape [18]. The ES curves form the usual saturation shape, with a
faster convergence early on. However, PGPE takes over soon in the convergence
process and then converges faster and onto a higher fitness level than ES. The
resulting curve of CMA-ES does not reach the results of the other two methods.
Especially while using a game board size of 7x7 CMA-ES prematurely converges
to a low fitness value. CMA-ES seems to be to greedy for this task and thus
converges premature.

One general observation from our experiments was that the longer the episodes
and the higher the number of parameters, the more PGPE outperforms ES (in
average fitness).

For general Go and other real-world problems more episodes are necessary.
Future applications with stacked MDRNNs are possible, as suggested in [10],
and for such applications PGPE seems more appropriate than ES or CMA-ES.

In summary, we find that PGPE performs better in finding good game be-
haviors, already on the smallest scaling level. It also scales better to scenarios
with more episodes, and to higher dimensionalities of controllers.
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5 Future Work

An interesting future application would be the research of the influence of
PGPE on scaling MDRNNs as well as determining the best ratio between game
board size and PGPE setup (especially using non standard meta-parameters
like smaller step sizes for more thorough exploration and better final behavior).
Besides, PGPE could be used for relearning the scaled controllers.

As suggested for ES in [3], we could use Co-Evolution to further improve
the PGPE results. For PGPE this would mean the fitness is evaluated not only
against the Java Player but also against the best learned controller(s) so far, and
the controller defined by the mean of the current parameter set.

Furthermore, adaptively increasing the number of games per fitness evalu-
ation could be used to speed up learning. In the early phase of learning, 3-4
games would be enough for an evaluation step, whereas up to 100 games might
be necessary later on, to calculate a fitness value accurate enough to distinguish
the slight changes in performance at that point.

As mentioned in section 3, the high standard deviation suggests that a higher
rate of exploration would be favorable for the overall performance and stability.
For PGPE this would correspond to decreasing the values of the two step sizes
that are normally set to αµ = 0.2 and ασ = 0.1. Not surprisingly however, this
more thorough exploration comes at the price of longer convergence time.

6 Conclusion

In this paper we have introduced different methods of Machine Learning: PGPE,
an algorithm based on a gradient based search through model parameter space,
ES and CMA-ES, based on population based search. We compared these methods
on the task of playing the Capture Game, a variant of Go, on small boards. Our
experiments allow us to conclude that PGPE is advantageous on the given task,
and also appears to scale better to larger and more difficult variants of the Go
game. This is in line with similar results for PGPE on different benchmarks [18].
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