
Korrekturabzug:  Künstliche Intelligenz, Heft 3/2009  nur zum Internen GebraucH! 
per fax:  0421 / 1630 1952  www.kuenstliche-intelligenz.de/index.php?id=autorenhinweise

Ontogenetic and Phylogenetic
Reinforcement Learning

Julian Togelius, Tom Schaul, Daan Wierstra, Christian Igel, Faustino Gomez, Jürgen Schmidhuber

Reinforcement learning (RL) problems come in many flavours, as do algorithms for solving them. It is currently not
clear which of the commonly used RL benchmarks best measure an algorithm’s capacity for solving real-world prob-
lems. Similarly, it is not clear which types of RL algorithms are best suited to solve which kinds of RL problems. Here
we present some dimensions along the axes of which RL problems and algorithms can be varied to help distinguish
them from each other. Based on results and arguments in the literature, we present some conjectures as to what
algorithms should work best for particular types of problems, and argue that tunable RL benchmarks are needed in
order to further understand the capabilities of RL algorithms.

1 Introduction

As defined by Sutton and Barto, any algorithm that can solve
a reinforcement learning (RL) problem, which is defined by
a (partially observable) Markov decision process, (PO)MDP, is
an RL algorithm [19]. In the last few decades, a wide variety
of algorithms have been used to successfully tackle RL prob-
lems in different guises. Surprisingly, these algorithms are
based on very different principles. This is possibly due to the
fact that they have been proposed and are actively studied
within separate academic communities (e.g. machine learn-
ing, computational intelligence, computational neuroscience
and control theory). There has been limited communication
between these research fields, leading to insufficient analysis
of the differences and similarities between these algorithms.
It would therefore be a great boon to RL research to find a
unified view, allowing us to understand the relative benefits
of algorithms based on different principles.

At the same time, a large variety of RL problems has
been defined and studied, varying from real-world contin-
uous control problems to abstract discrete toy benchmarks,
where real-world problems can be defined as problems that
were not created with the purpose of testing RL algorithms.
It is well known that some RL algorithms work well for some
problems where other algorithms fail, but in many cases it
is not clear what algorithms perform best under what con-
ditions. The principal dimensions along which RL problems
can vary are listed below.

The purpose of this short paper is to discuss some distinc-
tions between types of RL problems and RL methods, espe-
cially between ontogenetic and phylogenetic methods, which
in our experience is one of the distinctions that most clearly
divides the disparate research communities concerned with
RL in one form or another. We also make some conjectures
about what types of methods would work best on what
types of problems, and argue for the need of RL benchmarks
that are tunable in important problem dimensions.

2 RL problem dimensions

Reinforcement learning problems may vary along multiple
dimensions, for example:

• Discrete vs. Continuous. The environment’s state, action
and observation spaces can each be discrete, continuous
or mixed.

• Size and Dimensionality. Apart from being continuous
or discrete, the state, action and observation spaces may
vary in their dimensionality. For instance the state can be
represented by a single integer or by a visual scene. The
size of discrete dimensions can vary from small (binary) to
large (e.g. dictionaries).

• State Space Structure. There can be varying degrees of
structure in the state space. Many benchmarks assume a
certain locality (i.e. state transitions reach only a neigh-
borhood of states) or have hierarchical properties. That
structure is not necessarily ergodic, which thus allows for
‘catastrophic’ actions after which the agent cannot return
to parts of the state space (e.g. a tabletop robot might fall
off the table). There also exist exotic state representations
based on, e.g., relations between logical predicates.

• Stochasticity. The problem can have varying degrees of
stochasticity at different levels:

– The state transitions may be stochastic. For example a
robot’s wheels might slip, so it does not know how far
it will move when trying to move forward.

– The reward function needs not be deterministic, for in-
stance in a randomized game.

– The observations may be stochastic, for example in the
case of noisy sensor input.

– There could be different start states drawn according to
some random distribution.

• Observability. The environment can be fully observable,
where the underlying state is directly accessible to the
agent, or partially observable, where the agent can only
make indirect, potentially stochastic observations of the
state. This can impose a memory requirement on the
agent as the only way to reliably infer the current state.
In addition, observations can have varying degrees of re-
dundancy, which in turn can make learning harder [21].

• Generalization. Observation representations may vary in
the amount of meaningful structure encapsulating aspects
of the transition model and enabling generalization to
similar states.

Page 1

KI	 3/09

30

F a c h b e i t r a g



Korrekturabzug:  Künstliche Intelligenz, Heft 3/2009  nur zum Internen GebraucH! 
per fax:  0421 / 1630 1952  www.kuenstliche-intelligenz.de/index.php?id=autorenhinweise

• Reward Regime. Rewards can vary from a single signal at
the end of an episode (e.g. when winning a game) to many
informative intermediate rewards (which can correspond
to sub-tasks).

• Episodic vs Life-long. In case the task breaks down into a
sequence of separate finite episodes starting from a (distri-
bution of ) start state(s) we speak of episodic RL, otherwise
we speak of life-long RL.

• Number of Agents. One can distinguish between typi-
cal single-agent RL and multi-agent RL, in which several
learning entities interact [4]. Multi-agent RL can further be
sub-divided, e.g. depending on whether the agents are co-
operative, competitive, or some mixture of both.

3 RL methods

A large number of algorithms have been devised to solve RL
problems. There are several ways to categorize them, here
we propose a taxonomy and divide them into ontogenetic
algorithms and phylogenetic algorithms.

3.1 Phylogenetic approaches
Phylogenetic algorithms (neuroevolution, for example) are
those that only use a fitness function f(θ) to update its
policy-defining parameters θ. This fitness function is typi-
cally some measure of rewards accrued during one or more
episodes, and may be completely unknown to the algorithm.
Phylogenetic methods notably do not keep track of the par-
ticular states visited each episode, and typically (but not al-
ways) retain a ‘population’ of several policies.

Phylogenetic methods treat the RL problem as a (black
box) optimization problem, optimizing a policy for maximal
accumulated reward over one or several episodes. In princi-
ple, any optimization method could be used, including local
search methods like hill climbing and simulated annealing.
More commonly, however, evolutionary algorithms like evo-
lution strategies and genetic algorithms are used for phylo-
genetic RL [13]. These algorithms work by maintaining a pop-
ulation of policies. Each policy is assigned a fitness based on
the accumulated reward over one or more episodes. Less fit
policies are then removed from the population and replaced
with new policies, constructed through combining and vary-
ing more fit policies. Some algorithms from swarm intelli-
gence, e.g. particle swarm optimization, work according to
similar principles and can also be used for phylogenetic RL.

3.2 Ontogenetic approaches
In contrast to phylogenetic approaches, ontogenetic algo-
rithms (Q-learning, for example) can take into account the
full information on which states were visited and which
states yielded which rewards, and typically update a single
policy. The algorithms described in the discipline-defining
book Reinforcement Learning [19] (such as Q-learning [22]
and Sarsa [16]) are all ontogenetic. They often build on the
concept of a value function that maps states (or state-action
pairs) to values such as expected future rewards. Then a pol-
icy is defined on top of the value function. A greedy policy,
for instance, takes at each time step the action that leads to
the state with highest value (according to the value function).
Then reward is received from the environment, and the value
function is updated using temporal difference methods.

A different family of ontogenetic RL algorithms are those
based on policy gradient ascent. In the policy gradient frame-
work [25, 2, 14], policies are stochastic and its parameters are
updated directly using a gradient in the direction of better
expected return. These methods, when applied to function
approximators like neural networks [24], constitute an alter-
native to value-based methods that is more similar to phy-
logenetic methods in that they typically do not use value
functions but represent policies directly, and also because
they implicitly represent a distribution of policies (instead of
a single greedy policy) because of their inherently stochastic
actions [7]. Note that even though policy gradient methods
perform updates using gradient ascent, they are nevertheless
counted as ontogenetic methods because they use more in-
formation than just the fitness: what states were visited and
which rewards were obtained at which time steps after what
actions.

4 Which algorithms work best?
For which problems?

There is no particular RL algorithm that performs better
than other algorithms across all finite MDPs (certain univer-
sal RL methods can be proven to be optimal, however, these
are either incomputable [10] or currently suffer from insur-
mountable computation overhead that prevent their prac-
tical use [17]). Different algorithms have different strengths
and weaknesses, many of them currently unknown. However,
the literature contains a number of theoretical arguments
and empirical results suggesting the superiority of some fam-
ilies of algorithms over others for particular problem classes.

The theoretical results for ontogenetic methods are more
advanced than for phylogenetic methods, in particular, con-
vergence rates can be derived for some ontogenetic algo-
rithms [3]. Phylogenetic methods also suffer more from the
credit assignment problem, especially in stochastic or large
domains, since only one single fitness measure is attributed
to an entire episode roll-out (or several roll-outs). If there
is stochasticity or noise inherent in the environment, many
reruns of the same policy may be required to reliably esti-
mate its performance. On the one hand, ontogenetic meth-
ods suffer less from this limitation as they can (at least in
the fully observable case) attribute rewards and value to ex-
actly those states that have actually been visited during an
episode. On the other hand, many ontogenetic methods are
directly based on ranking policies and do not require to esti-
mate correct performance values or to estimate reliably per-
formance gradients. This makes them more robust, because
estimating a sufficiently good ranking under uncertainty or
noise is much easier than estimating accurate values or even
gradients [8]. Another limitation of phylogenetic approaches
is that the difficulty grows prohibitively with the state space.
Whereas ontogenetic methods can, in theory, exploit all in-
formation acquired during learning, phylogenetic methods
cannot – they must rely solely on fitness values, hence suf-
fering more from the credit assignment problem than do on-
togenetic methods. This might lead one to suspect that, in
large fully observable discrete state spaces that have inher-
ent stochasticity, ontogenetic approaches would also scale
better than phylogenetic ones. However, as of yet, neither

Page 2

KI	 3/09

31

F a c h b e i t r a g



Korrekturabzug:  Künstliche Intelligenz, Heft 3/2009  nur zum Internen GebraucH! 
per fax:  0421 / 1630 1952  www.kuenstliche-intelligenz.de/index.php?id=autorenhinweise

formal proof nor systematical empirical evidence is available
to support this. Establishing the relative scalability of onto-
genetic and phylogenetic methods would be an important
research contribution. Many temporal difference (TD) onto-
genetic approaches, however, seem to have difficulty using
function approximators (required for partially observable or
continuous-state environments), especially with neural net-
works [1]. Recent advances in function approximation such
as neural fitted Q iteration [15] have somewhat lessened
this problem. Nevertheless, using ontogenetic RL in contin-
uous environments remains tricky in practice. For example,
an ontogenetic method such as Sarsa learns much faster
than evolution on the continuous simplerace benchmark, but
is less reliable, harder to tune, and evolution always even-
tually reaches higher fitness [12]. Phylogenetic approaches
such as neuroevolution have been fairly successful and ro-
bust in practice on various domains [6, 18, 6, 5, 7, 8, 9], and
generally do not suffer as much from function approximator
fine-tuning problems as TD-based ontogenetic approaches
do [23]. The reason presumably is that it is easier to find a
good policy than an approximately correct value function.
Note that even approximated value functions that differ only
slightly from the true value function of an optimal policy may
still yield very inappropriate policies, and many continuous
problems have simple policies but complex value functions.

As soon as partial observability comes into play, the on-
togenetic methods’ difficulties get even more aggravated.
Solving POMDPs using ontogenetic methods seems to be ex-
ceedingly hard and requires significant fine-tuning skill, espe-
cially when using memory-capable function approximators
(e.g. recurrent neural networks).

4.1 Some conjectures

Based on the arguments advanced in this paper we conjec-
ture the following:

• Phylogenetic methods, such as neuroevolution, generally
outperform ontogenetic methods on problems with con-
tinuous state spaces and partial observability.

• Ontogenetic methods with value functions, such as Q-
learning and Sarsa, are unbeatable on problems with
small, discrete state spaces and full observability. For
example, evolutionary methods perform worse than Q-
learning and Sarsa in large discrete state spaces with full
observability.

• Since ontogenetic methods, unlike phylogenetic methods,
can use all experiential information obtained during inter-
action with the environment, ontogenetic methods out-
perform phylogenetic algorithms in applications where
it is helpful to exploit intermediate rewards, especially if
episodes are long.

• Policy gradients scale better than value-based ontogenetic
learning for continuous state spaces where function ap-
proximation is necessary.

• Rank-based phylogenetic algorithms can better deal with
uncertainty or noise than algorithms based on estimating
true performance values or performance gradients.

One may disagree with these conjectures. If so, this under-
scores the need for empirical corroboration or falsification.

5 Conclusion: the need for
parameterizable benchmarks

Many attempts have been made to compare different RL
methods on benchmark problems. These include open com-
petitions [20, 11] and efforts to standardize simple bench-
marks through source code sharing. However, each of these
efforts typically only compares a few algorithms on a single
problem, leading to contradictory results regarding the mer-
its of different RL methods.

An approach to more exhaustive reliable characteriza-
tion of methods would be to create benchmarks that can
be varied along as many as possible of the problem dimen-
sions listed in section 2. Through tuning benchmark param-
eters, we could then corroborate, falsify or qualify hypothe-
ses about relative method performance such as those in sec-
tion 4.1. Evolutionary computation could conceivably also be
used to find problem parameters that order algorithms ac-
cording to a desired rank, illuminating the relative strengths
of these algorithms.

References
[1] L. Baird. Residual algorithms: Reinforcement learning with function

approximation. In In Proceedings of the Twelfth International Confer-
ence on Machine Learning (ICML), pages 30–37. Morgan Kaufmann,
1995.

[2] J. Baxter and P. L. Bartlett. Reinforcement learning in POMDP’s via
direct gradient ascent. In In Proceedings 17th International Confer-
ence on Machine Learning (ICML), pages 41–48. Morgan Kaufmann,
2000.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming
(Optimization and Neural Computation Series, 3). Athena Scientific,
1996.

[4] L. Buşoniu, R. Babuška, and B. De Schutter. A comprehensive survey
of multiagent reinforcement learning. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, 38(2):156–
172, 2008.

[5] R. De Nardi, J. Togelius, O. Holland, and S. M. Lucas. Evolution of
neural networks for helicopter control: Why modularity matters. In
Proceedings of the IEEE Congress on Evolutionary Computation, 2006.

[6] F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accelerated neural
evolution through cooperatively coevolved synapses. Journal of
Machine Learning Research, 9(May):937–965, 2008.

[7] V. Heidrich-Meisner and C. Igel. Similarities and differences be-
tween policy gradient methods and evolution strategies. In M. Ver-
leysen, editor, 16th European Symposium on Artificial Neural Net-
works (ESANN 2008), pages 149–154. Evere, Belgien: d-side publica-
tions, 2008.

[8] V. Heidrich-Meisner and C. Igel. Hoeffding and bernstein races for
selecting policies in evolutionary direct policy search. In Proceed-
ings of the 26th International Conference on Machine Learning (ICML),
2009.

[9] V. Heidrich-Meisner and C. Igel. Neuroevolution strategies for
episodic reinforcement learning. Journal of Algorithms, 2009.

[10] M. Hutter. Universal Artificial Intelligence: Sequential Decisions based
on Algorithmic Probability. Springer, 2005.

[11] D. Loiacono, J. Togelius, P. L. Lanzi, L. Kinnaird-Heether, S. M. Lucas,
M. Simmerson, D. Perez, R. G. Reynolds, and Y. Saez. The WCCI
2008 simulated car racing competition. In Proceedings of the IEEE
Symposium on Computational Intelligence and Games, 2008.

[12] S. M. Lucas and J. Togelius. Point-to-point car racing: an initial study
of evolution versus temporal difference learning. In Proceedings
of the IEEE Symposium on Computational Intelligence and Games,
pages 260–267, 2007.

Page 3

KI	 3/09

32

F a c h b e i t r a g



Korrekturabzug:  Künstliche Intelligenz, Heft 3/2009  nur zum Internen GebraucH! 
per fax:  0421 / 1630 1952  www.kuenstliche-intelligenz.de/index.php?id=autorenhinweise

[13] D. E. Moriarty, A. Schultz, and J. J. Grefenstette. Evolutionary algo-
rithms for reinforcement learning. Journal of Artificial Intelligence
Research, 11:241–276, 1999.

[14] J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-
9):1180–1190, 2008.

[15] M. Riedmiller. Neural fitted Q iteration – first experiences with a
data efficient neural reinforcement learning method. In J. Gama,
R. Camacho, P. Brazdil, A. Jorge, and L. Torgo, editors, European Con-
ference on Machine Learning (ECML), volume 3720 of Lecture Notes
in Computer Science, pages 317–328. Springer, 2005.

[16] G. A. Rummery and M. Niranjan. On-line Q-learning using con-
nectionist systems. Technical Report CUED/F-INFENG/TR 166, Cam-
bridge University Engineering Department, 1994.

[17] J. Schmidhuber. Gödel machines: Fully self-referential optimal uni-
versal self-improvers. In B. Goertzel and C. Pennachin, editors, Arti-
ficial General Intelligence, pages 119–226, 2006.

[18] K. O. Stanley. Efficient evolution of neural networks through complex-
ification. PhD thesis, Department of Computer Sciences, University
of Texas, Austin, TX, 2004.

[19] R. Sutton and A. Barto. Reinforcement Learning. MIT Press, 1998.

[20] The RL-competition team. RL-competition. http://www.rl-
competition.org.

[21] J. Togelius, T. Schaul, J. Schmidhuber, and F. Gomez. Countering
poisonous inputs with memetic neuroevolution. In Parallel Problem
Solving From Nature 10 (PPSN X), volume 5199 of Lecture Notes in
Computer Science, pages 610–619. Springer, 2008.

[22] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis,
Cambridge University, Cambridge, England, 1989.

[23] S. Whiteson, M. E. Taylor, and P. Stone. Empirical studies in action
selection with reinforcement learning. Adaptive Behavior, 15:33–50,
2007.

[24] D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber. Solving deep
memory POMDPs with recurrent policy gradients. In Proceedings
of the 17th International Conference on Artificial Neural Networks
(ICANN), volume 4668 of Lecture Notes in Computer Science, pages
697–706. Springer, 2007.

[25] R. J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning, 8:229–256,
1992.

Contact
IDSIA
Galleria 2
6928 Manno-Lugano
Switzerland
Tel.: +41 58 666 6660
Fax: +41 58 666 6661
{julian, tom, daan, tino, juergen}@idsia.ch
christian.igel@neuroinformatik.rub.de

Julian Togelius is a researcher at IDSIA. He spe-

cializes in evolutionary reinforcement learning and

computational intelligence in games. His recent re-

search involves using neuroevolution to measure

learnability of game rules in order to aid game de-

sign.

Tom Schaul is a PhD student at IDSIA, working on

black-box optimization, evolution of large-scale re-

current neural networks, as well as artificial curios-

ity.

Daan Wierstra is a PhD student at IDSIA, working

on black-box optimization and on the combination

of policy gradient learning with recurrent neural

networks.

Christian Igel is Juniorprofessor for Optimization

of Adaptive Systems at the Institut für Neuroinfor-

matik at the Ruhr-Universität Bochum, Germany.

Faustino Gomez is a senior researcher at IDSIA.

He works primarily on evolutionary reinforcement

learning using cooperative coevolution of neural

networks.

Jürgen Schmidhuber is co-director of IDSIA, and

professor at TU Munich and University of Lugano.

His research interests include machine learning,

mathematically optimal universal AI, recurrent neu-

ral networks, adaptive robotics, complexity theory,

digital physics and the fine arts.

Page 4

KI	 3/09

33

F a c h b e i t r a g


