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Abstract. The recently introduced family of natural evolution strate-
gies (NES), a novel stochastic descent method employing the natural
gradient, is providing a more principled alternative to the well-known
covariance matrix adaptation evolution strategy (CMA-ES). Until now,
NES could only be used for single-objective optimization. This paper ex-
tends the approach to the multi-objective case, by first deriving a (1+1)
hillclimber version of NES which is then used as the core component of a
multi-objective optimization algorithm. We empirically evaluate the ap-
proach on a battery of benchmark functions and find it to be competitive
with the state-of-the-art.

1 Introduction

The last decade has seen a shift in research focus from single-objective to multi-
objective optimization (MOO) [1, 2, 5, 7, 12, 13]. While many problems can very
naturally be viewed as multi-objective (e.g., minimizing cost while simultane-
ously maximizing utility), they have traditionally been traded off into a single
objective to be optimized. Numerous arguments have been put forward in favor
of handling the multiple objectives explicitly, especially in the context of evolu-
tionary computation. For one, the diversity of solutions found is larger than for
single-objective optimization with fixed trade-offs, which in turn can improve
over the single-objective optimization performance at its own game, as it may
allow the search to circumnavigate local optima [7]. Furthermore, in many prac-
tical applications it is more advantageous to choose among the non-dominated
solutions within the Pareto-front, rather than deciding upon a trade-off a pri-
ori and then maximizing it. Among the broad range of MOO algorithms that
have been proposed (see e.g. [1] for an overview, omitted here for space reasons),
approaches based on evolution strategies [5] are of particular interest for the
present paper. They show how algorithms like the covariance matrix adaptation
evolution strategy (CMA-ES [4, 6]), that shine on non-seperable optimization
problems, can be utilized for MOO.

The recently introduced family of natural evolution strategies (NES [3,8–11]),
consists in an optimization method that follows a sampled natural gradient of the
expected fitness, and as such, provides a more principled alternative to CMA-
ES. In this paper we combine the well-founded framework of NES with the



proven approach of tackling MOO using evolution strategies. This both signifi-
cantly broadens the applicability of NES, and establishes a novel, elegant MOO
algorithm. Our contribution is two-fold: First, we turn the most recent NES
algorithm into a hillclimber. Second, we use this hillclimber as a module of an
evolutionary algorithm for multi-objective optimization, following an established
scheme. We benchmark both algorithms against their CMA-ES counterparts and
obtain competitive results.

2 Natural Evolution Strategies

Natural evolution strategies (NES) [3,8–11] are a class of evolutionary algorithms
for real-valued optimization. They maintain a Gaussian search distribution with
fully adaptive covariance matrix. The principal idea is to adapt the search dis-
tribution to the problem at hand by following the natural gradient of expected
fitness. Although relying exclusively on function value evaluations, the resulting
optimization behavior closely resembles second order optimization techniques.
This avoids drawbacks of regular gradients which are prone to slow or even
premature convergence. Just like CMA-ES [4, 6], NES algorithms are invariant
under monotone transformations of the fitness function and linear transforma-
tions of the search space (given that the initial search distribution is transformed
accordingly).

In this paper we build upon the most recent NES variant, exponential NES

(xNES), first presented in [3]. We start with stating its working principles, which
are needed later on to cleanly derive its hillclimber variant.

In each generation the algorithm samples a population of n ∈ N individuals
xi ∼ N (µ,C), i ∈ {1, . . . , n}, i.i.d. from its search distribution, which is repre-
sented by the center µ ∈ R

d and a factor A ∈ R
d×d of the covariance matrix

C = AAT . These points are obtained by sampling zi ∼ N (0, I) and setting
xi = µ + A · zi. In this paper, I always denotes the d-dimensional unit matrix.
Let p(x |µ,A) denote the density of the search distribution N (µ,AAT ). Then,

J(µ,A) = E[f(x) |µ,A] =

∫

f(x) p(x | θ) dx

is the expected fitness under the current search distribution. The so-called ‘log-
likelihood trick’ enables us to write

∇(µ,A)J(µ,A) =

∫

[

f(x) ∇(µ,A) log(p(x |µ,A))
]

p(x |µ,A) dx

≈
1

n

n
∑

i=1

f(xi) ∇(µ,A) log(p(x |µ,A)) .

Using raw fitness values endangers the algorithm to get stuck on plateaus
and to systematically overjump steep optima. Thus, fitness shaping [11] is used
to normalize the fitness values by shaping them into rank-based utility values
ui ∈ R, i ∈ {1, . . . , n}. For this purpose we order the individuals by fitness,



Algorithm 1: The xNES Algorithm

Input: d ∈ N, f : R
d → R, µ ∈ R

d, A ∈ R
d×d

σ ← d
p

| det(A)|; B ← A/σ
while stopping condition not met do

for i ∈ {1, . . . , n} do zi ← N (0, I); xi ← µ + σB · zi

sort {(zi, xi)} with respect to f(xi)
Gµ ←

Pn

i=1 ui · zi

GA ←
Pn

i=1 ui · (ziz
T
i − I); Gσ ← tr(GA)/d; GB ← GA −Gσ · I

µ← µ + ηµ · σB ·Gµ; σ ← σ · exp(ησ ·Gσ); B ← B · exp(ηB ·GB)
end

with x1:n denoting the best and xn:n denoting the worst offspring. We then use
the “fitness-shaped” gradient G =

∑n
i=1 ui · ∇(µ,A) log(p(xi:n |µ,A)) to update

the parameters of the search distribution. Typically, the utility values are either
non-negative numbers that add to one, or a shifted variant with zero mean.

The xNES algorithm introduces a number of novel techniques for its up-
dates. In each step, the coordinate system is transformed such that the search
distribution has zero mean and unit variance. This results in the Fisher infor-
mation matrix being the unit matrix and the natural gradient coinciding with
the ‘standard’ gradient. The exponential map M 7→ exp(M) =

∑

∞

n=0
1
n!M

n

for symmetric matrices is used to encode the covariance matrix, resulting in a
multiplicative form of the covariance matrix update (see [3] for details).

The parameters (µ,A) of the distribution can be split canonically into in-
variant components. This amounts to a (non-redundant) representation similar
to CMA-ES, that is, we split off a global step size variable from the covariance
matrix in the form A = σ · B, with det(B) = 1. We obtain the corresponding
gradient components

Gµ =
n

∑

i=1

ui · zi GA =
n

∑

i=1

ui · (ziz
T
i − I)

with sub-components Gσ = tr(GA)/d and GB = GA−Gσ · I (refer to [3] for the
full derivation).

Let ηµ, ησ, and ηB denote learning rates for the different parameter com-
ponents. Putting everything together, the resulting xNES update rules for the
search distribution read

µ← µ + ηµ · σB ·Gµ σ ← σ · exp(ησ ·Gσ) B ← B · exp(ηB ·GB) .

The full xNES algorithm is summarized in Algorithm 1.
As indicated earlier, xNES is closely related to CMA-ES. However, concep-

tually xNES constitutes a much more principled approach to covariance matrix
adaptation. This is because the updates of all parts of the search distribution,
center, global step size, and full covariance matrix, result from the same principle
of natural gradient descent.



Algorithm 2: (1 + 1)-xNES

Input: d ∈ N, f : R
d → R, µ ∈ R

d,
A ∈ R

d×d

σ ← 1
while stopping condition not met
do

z ← N (0, I)
x← µ + σA · z
if f(x) is better than f(µ) then

Gµ ← z
GA ← zzT − I
µ← µ + 1 ·A ·Gµ

A← A · exp(ηA ·GA)
σ ← σ · exp(η+

σ )
else σ ← σ/ exp(η−

σ )
end

Algorithm 3: (1 + 1)-xNES with
natural gradient descent

Input: d ∈ N, f : R
d → R, µ ∈ R

d,
A ∈ R

d×d

while stopping condition not met
do

z ← N (0, I); x← µ + A · z
if f(x) is better than f(µ) then

succ← +; z1:2 ← z; z2:2 ← 0
else

succ← −; z1:2 ← 0; z2:2 ← z
Gµ ←

P2
i=1 u

(µ)
i · zi:2

GA ←
P2

i=1 u
(A,succ)
i (zi:2z

T
i:2−I)

µ← µ + 1 ·A ·Gµ

A← A · exp(ηA ·GA)
end

3 An Elitist Variant for the NES Family

In this section we introduce (1 + 1)-xNES, a hillclimber variant of xNES. Our
goal is to use this algorithm as a building block for a multi-objective optimiza-
tion scheme, in analogy to the development of the (1 + 1)-CMA-ES. The main
motivation for this work is that (1 + 1)-xNES is conceptually simpler and more
unified than (1 + 1)-CMA-ES. We apply a number of techniques to xNES that
were used to derive (1 + 1)-CMA-ES from its population-based variant. In a
second step we show that the resulting algorithm can be derived from the NES
principle of following the natural fitness gradient.

The resulting algorithm implements the following principles to adapt its
search strategy (as usual, an offspring is considered successful if its fitness is
better than the fitness of the parent):

1. A successful offspring becomes the center of the search distribution.
2. Sampling a successful offspring results in a covariance matrix update.
3. Global step size adaptation is used to sustain a success rate of about 1/5.

The elitist (1 + 1)-xNES algorithm, stated in Algorithm 2, incorporates the
above principles into the xNES algorithm in a straightforward way. It is designed
such that its state is completely determined by its current search distribution. We
use a global step size σ and a factor A to represent the covariance matrix C = σ2 ·
AT A. We stick to this redundant representation for the sake of clarity, as it allows
us to separate the mechanisms of xNES-style covariance matrix adaptation and
success rule-based step size adaptation. Also note that the learning rate for the
center has been fixed to one in order to satisfy the elitism rule. We set the other
learning rates to ηA = 1/4 · d1.5, η−

σ = 1/5 · d1.5, and η+
σ = d1.5. The form of the

dependency of the learning rates on the problem dimension is inspired by the
learning rates of xNES, divided by its population size.



In the special case of (1 + 1)-xNES the matrix exponential in the covari-
ance matrix update can be computed analytically (that is, without resorting
to iterative matrix decomposition techniques) and in quadratic time. This is a
consequence of the special form M = v · zzT + w · I of the argument: We exploit
its eigen-decomposition, which consists of a one-dimensional eigenspace along z
with eigenvalue v · ‖z‖2 +w, while the space orthogonal to z forms an eigenspace
with eigenvalue w. With the definitions S = (1/‖z‖2) · zzT and R = I − S we
obtain exp(M) = exp(v) · R + exp(v · ‖z‖2 + w) · S, which can be computed
in O(d2) operations. The decisive advantage of this computation is numerical
stability, even if the time per generation remains cubic (matrix multiplication).

From a conceptual point of view Algorithm 2 is still unsatisfactory, because
the step size adaptation mechanism is not derived from the NES principle of
updating the search distribution by following the natural gradient of expected
fitness. Fortunately, the NES update scheme (and fitness shaping in particular)
is flexible enough to cover the elitist case, including the success-based update
rule, as we will see in the following.

In the (1 + 1)-selection scheme we need to assign a rank-based utility value
not only to the offspring, but also to the parent, giving us an additional degree
of freedom. Using different utility values for different parts of the (1 + 1)-xNES
update (analogous to using different learning rates) allows us to derive the full
update rule from the principle of natural gradient descent. Note that multiplica-
tive factors in the learning rate and the utility values are exchangable, because
they have the exact same effect.

The simplest case is the update of the center µ, which is completely deter-
mined by the elitism rule. This leaves us with a single choice, amounting to

(u
(µ)
1 , u

(µ)
2 ) = (1, 0) for the utility values. Note that in this notation the utility

value u1 automatically refers to the better individual, such that it may corre-
spond to either parent or offspring. This reflects the intuitive notion that in the
(1+1)-selection scheme only the better individual is of use (has positive utility),
while the worse individual is discarded (has zero utility).

The covariance matrix update is a bit more involved, as here the utility values
are success dependent. In the simpler case where the offspring is not successful
(the else part in Algorithm 2), it does not have an impact on the update, and

the corresponding utility value is u
(A,−)
2 = 0. Interestingly, we can use the utility

of the parent to encode the shrinking of the global step size. The calculation

−η−

σ · I = ηA ·GA = ηA ·
(

u
(A,−)
1 · (00T − I) + u

(A,−)
2 · (zzT − I)

)

shows that the choice u
(A,−)
1 = η−

σ /ηA does the job (with 0 ∈ R
d denoting the

zero vector). In case of the offspring being successful the analog calculation

η+
σ · I + ηA · (zzT − I) = ηA ·GA = ηA ·

(

u
(A,+)
1 · (zzT − I) + u

(A,+)
2 · (−I)

)

results in u
(A,+)
1 = 1 and u

(A,−)
2 = −η+

σ /ηA. These rules amount to a natural
adaptation of the notion of utility to the (1 + 1) elitist selection scheme. This



means that Algorithm 2 is fully compatible with the principle of strategy adap-
tation by following the (utility shaped) gradient of expected fitness. It can be
turned into the equivalent Algorithm 3.

4 Experimental Evaluation of (1 + 1)-xNES

We compared the (1 + 1)-xNES hillclimber to both xNES and (1 + 1)-CMA-ES
a number of standard benchmark functions. We initialized the algorithms by
drawing the initial center of the search distribution from a Gaussian with zero
mean and unit variance, and setting the covariance matrix to I. Each algorithm
was run until it reached the target fitness of 10−10 (−103 for the unbounded
functions ParabR and SharpR), in which case the trial is counted as a success. A
trial is said to fail if it reaches the maximum number of 107 iterations or shrinks
the search distribution below numerical limits, which amounts to premature
convergence. The results are shown in Figure 1.

The plots show (1+1)-xNES practically reaching the performance of (1+1)-
CMA-ES on some benchmarks, while it falling behind on others, particularly in
high dimensions. We attribute this to a better tuning of the parameters of (1+1)-
CMA-ES, and the lack of evolution paths in xNES. Not surprisingly, the new
elitist algorithm improves on the original xNES on nearly all unimodal problems
studied here. Interestingly, both elitist algorithms have severe problems with the
sharp ridge benchmark, on which they prematurely converge due to their too
greedy strategy adaptation.

5 Multi-Objective NES

We now posess all the ingredients to construct a natural evolution strategy
for multi-objective optimization, named MO-NES. Our construction follows the
successful scheme developed in [5].

The MO-NES algorithm maintains a population of (1+1)-xNES hillclimbers,
with the goal of maximally approximating the Pareto front. Each generation,
the N ∈ N hillclimbers generate one offspring each. As in MOO there is no
unique notion of success due to multiple contradicting objectives, the selection
scheme of the individual hillclimbers becomes meaningless. Instead, we adopt
the indicator-based selection scheme used in [5] which consists of two stages.
Parents and offspring are merged into a single population and ranked according
to (1) the dominance relation, and (2) an indicator (see, e.g, [12]) that permits
aggregating the relative value of each individual within its front into a single
number (in contrast to the m-dimensional fitness vector).

For this purpose, the population is split into fronts F1, . . . , Fk using non-
dominated sorting. Within each front no individual weakly dominates another,
while Fi weakly dominates Fj for i < j. Thus, in this notation the set F1

consists of the non-dominated solutions. A secondary sorting criterion is needed
to rank individuals within each front. In this study we use the S-measure or
hypervolume contribution [13], which is the Laplace measure of the volume of



Algorithm 4: The MO-NES Algorithm

Input: f : R
d → R

m, (µi, σi, Ai) ∈ R
d × R× R

d×d for i ∈ {1, . . . , N}
while stopping condition not met do

for i ∈ {1, . . . , N} do

zi ∼ N (0, I); µ′

i ← µi + σiAizi; σ′

i ← σi; A′

i ← Ai

use non-dominated sorting to compute fronts F1, . . . , Fk

compute the S-measure of each individual within its front
compute ranks R1, . . . , RN , R′

1, . . . , R
′

N ∈ {1, . . . , 2N}
for i ∈ {1, . . . , N} do

if R′

i < Ri then

σi ← σi · exp(η+
σ ); σ′

i ← σ′

i · exp(η+
σ ); A′

i ← A′

i · exp(ηA · [ziz
T
i − I])

else

σi ← σi/ exp(η−

σ ); σ′

i ← σ′

i/ exp(η−

σ )
copy best ranked N individuals into (µi, σi, Ai) for i ∈ {1, . . . , N}

end

the set dominated by some point in objective space, but not by any other point
in the front. The hypervolume depends on a reference point, which is chosen
adaptively such that it is dominated by the whole population, and such that the
best individuals w.r.t. a single objective are always preferred (which amounts to
elitism w.r.t. each single objective). Then selection amounts to keeping the best
N out of 2N individuals according to this ranking.

Care has to be taken when adapting the (1 + 1)-xNES hillclimber to this
selection scheme, because the notion of success differs from the condition for
survival. We say that an offspring that is ranked higher than its parent is suc-
cessful, resulting in a covariance matrix update. In contrast, depending on the
success of the mutation, the step size is updated for parent and offspring.

The resulting MO-NES algorithm is summarized in Algorithm 4. It is derived
straightforwardly by removing the (1 + 1)-CMA-ES module from MO-CMA-ES
and replicing it with (1 + 1)-xNES. An individual is represented by the triplet
(µ, σ,A) ∈ R

d × R × R
d×d, which is the state of the corresponding hillclimber.

We denote parents by (µi, σi, Ai) and offspring by (µ′

i, σ
′

i, A
′

i) for i ∈ {1, . . . , N}.

6 Experimental Evaluation of MO-NES

We assess the performance of MO-NES compared to MO-CMA-ES on a collec-
tion of test problems found in [5], namely the standard benchmarks FON, ZDT1,
ZDT2, ZDT3, ZDT4, ZDT6, coming with rectangular feasible regions, and the
unbounded problems ELLI1, ELLI2, CIGTAB1, and CIGTAB2. These bench-
marks cover a number of typical challenges such as concave and disconnected
pareto fronts, as well as highly correlated variables.

Experimental Setup We largely follow the experimental procedure of [5]. The
population size was set to N = 100, with individuals initialized uniformly at
random in the feasible region. For the unbounded benchmarks the population



was sampled from [−10, 10]d. We used a search space dimension of d = 10 for
all problems except FON, where it is fixed to d = 3. Resembling [5], we set
the component-wise standard deviation of the initial search distribution to 0.6
times the edge length of the hyper-rectangle from which the initial population is
sampled. Constraints were handled by evaluating the closest feasible point and
adding 10−6 times the squared norm of the distance to the feasible region to
each fitness component.

Each algorithm was granted 50.000 fitness evaluations, and assigned a score
according to the hypervolume dominated by the final population. To achieve
comparability with other studies, we fix the reference point for the hypervolume
computation to (1, 1)T for FON and the ZDT-benchmarks, with the exception
of (1, 20)T for ZDT4 (which is not solved satisfactory by any of the two algo-
rithms), and to (10, 10)T for the unconstrained ELLI and CIGTAB problems.1

We performed 25 independent trials for each experiment.

Results and Discussion The results are summarized in Table 1. There is no clear
trend indicating that one algorithm would be generally preferable to the other.
In most cases the differences between the algorithms are negligible, in the sense
that they are below the range of the inter-trial deviations, and only in the fifth
digit of the hypervolume. We found four significant differences (Wilcoxon rank
sum test, p = 0.01): The MO-CMA-ES performs better on benchmarks with
quadratic objectives, such as FON and CIGTAB, while MO-NES is superior on
the ZDT6 problem. We conclude that the Pareto front approximations obtained
by the two algorithms are generally of comparable quality. Taking the conceptual
parallels of the two algorithms into account, this result does not come as a
surprise. It shows that our novel MO-NES algorithm achieves state-of-the-art
performance.

7 Conclusion

We presented two novel algorithms. The (1 + 1)-xNES hillclimber constituts a
minimal elitist variant of the xNES algorithm which can be derived completely
from the principle of natural gradient descent, despite its success-based step size
adaptation rule. Like other NES algorithms, (1+1)-xNES is more principled than
its canonical counterpart (1 + 1)-CMA-ES. Combining our new hillclimber with
the multi-objective optimization scheme established for MO-CMA-ES results in
the MO-NES algorithm. We empirically find both algorithms to exhibit state-
of-the-art performance.

The impact of these contributions be seen from two perspectives: On the
one hand, they make NES capable of multi-objective optimization, on the other

1 Note that adaptively computed reference points are used in both algorithms to com-
pute the S-measure for selection, and that we use these fixed reference points only
for the evalution of the final fronts. This procedure is chosen to foster comparability
with future studies. In particular, it does not expose any additional information to
the search algorithms.
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Fig. 1: Log-log plot of fitness evaluations required to reach target fitness (see text)
over search space dimension for 9 different benchmark functions. The level of opacity
of dashed connections indicates the fraction of successful runs. Setups for which no
single run converged are not shown at all.

MO-NES MO-CMA-ES

benchmark 25% 50% 75% 25% 50% 75%
function quantile quantile quantile quantile quantile quantile

FON 0.337443 0.337453 0.337479 0.337496 0.337511 0.337539

ZDT1 0.661945 0.661962 0.661972 0.661934 0.661958 0.661972
ZDT2 0.328698 0.328703 0.328713 0.328697 0.328707 0.328720
ZDT3 1.042180 1.042180 1.042190 1.042180 1.042180 1.042190
ZDT4 0.661836 0.661860 0.661885 0.661834 0.661857 0.661879
ZDT4 10.93040 12.80430 15.95730 9.53145 11.77960 12.46610
ZDT6 0.3225640 0.3225750 0.3225810 0.0863215 0.3225550 0.3225770

ELLI1 95.5311 95.5527 95.5593 95.5466 95.5553 95.5604
ELLI2 99.9872 99.9905 99.9922 99.9897 99.9907 99.9931
CIGTAB1 97.2286 97.2302 97.2310 97.2303 97.2312 97.2318

CIGTAB2 99.9981 99.9985 99.9987 99.9984 99.9988 99.9990

Table 1: Hypervolume covered by the populations of MO-NES and MO-CMA-ES after
50,000 fitness evaluations. Statistically superior results are marked bold.



hand, they enrich the field of evolutionary MOO by the NES principle of descent
along the natural fitness gradient.
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