
Better Generalization with Forecasts

Tom Schaul
Courant Institute of Mathematical Sciences

New York University
715 Broadway, New York, NY 10003, USA

Email: schaul@cims.nyu.edu

Mark Ring
Email: research@markring.com

Abstract
Predictive methods are becoming increasingly pop-
ular for representing world knowledge in au-
tonomous agents. A recently introduced predictive
method that shows particular promise is the Gen-
eral Value Function (GVF), which is more flexi-
ble than previous predictive methods and can more
readily capture regularities in the agent’s sensori-
motor stream. The goal of the current paper is to
investigate the ability of these GVFs (also called
“forecasts”) to capture such regularities. We gen-
erate focused sets of forecasts and measure their
capacity for generalization. We then compare the
results with a closely related predictive method
(PSRs) already shown to have good generalization
abilities. Our results indicate that forecasts provide
a substantial improvement in generalization, pro-
ducing features that lead to better value-function
approximation (when computed with linear func-
tion approximators) than PSRs and better general-
ization to as-yet-unseen parts of the state space.

1 Overview
One of the grandest goals of AI is a continual-learning agent,
capable of constantly extending its skills and its understand-
ing of its world, building step by step on top of what it has al-
ready learned [Ring, 1994]. Such an agent requires a method
for capturing and representing the important features and reg-
ularities of its sensorimotor stream. Prediction has emerged
as a particularly powerful principle for organizing knowl-
edge and skills, focusing the agent’s representational efforts
on making and testing verifiable hypotheses about the conse-
quences of its actions [Sutton, 2001]. A recently proposed
representation is the General Value Function (GVF) [Sut-
ton et al., 2011; Maei and Sutton, 2010; Sutton et al., 2006;
Modayil et al., 2012], which offers a rich and expressive lan-
guage for action-conditional prediction, resolving many of
the limitations of previous predictive methods.

This paper is a focused experimental investigation of GVFs
(sometimes called forecasts). We introduce no new learning
techniques or algorithms; rather we examine a narrow sub-
class of forecasts (GVFs) and take a first look at their abil-
ity to capture important regularities. We specifically wish

to compare them to an earlier predictive method, Predictive
State Representations or PSRs [Littman et al., 2002], to de-
cide whether forecasts are likely to be a better method for cap-
turing the useful features and regularities of a learning agent’s
environment. Thus, we need to test how well they generalize.

While generalization in static, supervised-learning prob-
lems has been the standard measure of comparison for
decades, dynamic learning problems such as robotics and
reinforcement-learning tasks are complicated by the interac-
tion of the agent and do not admit so readily to such measures.
Consequently tests for generalization are far less common.

Yet generalization is particularly important to continual-
learning agents, which may never experience more than a mi-
nuscule fraction of the states in their environments but must
nevertheless capture the most useful regularities and exploit
these over a potentially vast state space.

Predictive methods of state representation differ from so-
called “historical” methods in that their focus is not on re-
membering what the agent has seen in the past, but on pre-
dicting what the agent might see in the future.1 PSRs are
the most widely studied predictive methods, but there are
others, such as Simple-Assignment Automata [Rivest and
Schapire, 1994], Observable Operator Models [Jaeger, 2000],
and TD Networks [Sutton and Tanner, 2005]. These methods
represent the agent’s state information as a set of features,
each an action-conditional prediction of a future observation.
A PSR feature, for example, estimates in each state the prob-
ability of making a specific observation if the agent were to
take a specific sequence of actions starting in that state.2

Forecasts (GVFs) are similar to PSRs in the general sense
that each feature estimates the outcome of following a spe-
cific course of behavior. But a crucial difference is that this
course of behavior is not an open-loop sequence of actions,
but a closed-loop option [Sutton et al., 1999]: a mapping from
states to actions (a policy) together with the conditions for the
policy’s initiation and termination. Thus, forecasts are more
general, more flexible, and have the ability to capture more
temporally indefinite regularities than PSRs. Further enhanc-
ing their capacity for abstraction and generalization, forecasts

1There is a broad gray area in between, where algorithms such as
context trees [Willems et al., 1995] or, more immediately, Temporal
Transition Hierarchies [Ring, 1993], learn to make specific predic-
tions about the future based on finding specific patterns in the past.

2There are actually a variety of slightly different types of PSRs.

can also be composed or layered in two ways: first, one fore-
cast can learn to predict the (option-conditional) value of an-
other; second, the policy learned for one can be used as the
policy of another.

One of the most important advantages of forecasts is the
existence of so-called “off-policy” learning methods, allow-
ing large numbers of them to be trained simultaneously [Sut-
ton et al., 2011]. Each learns to make different predictions
about different kinds of behavior from the agent’s single
stream of sensorimotor data. This vital capability makes fore-
casts perhaps the best existing candidate for continual learn-
ing; however, in the current study, we will not need to make
use of those learning methods. Because we are focusing ex-
clusively on the issue of representation, we bypass the com-
plexities of off-policy learning altogether and do batch up-
dates with a full model of the environment.3

Furthermore, the current study investigates only a small
subclass of forecasts, focusing on some of their most basic
capabilities. Specifically, while a forecast is defined as a five
tuple, we hold two constant and greatly constrain a third.

Because there is no existing method for discovering new
forecasts in a principled way (and we are not proposing one)
we simply create all possible forecasts, limited to our con-
straints, in a canonical ordering and look at resulting perfor-
mance. This approach, inspired by a similar 2005 investi-
gation of the representational power of PSRs [Rafols et al.,
2005] allows us to ask: what might happen if we had a mech-
anism for building new forecasts? Is there reason to believe
that they would generalize well, capturing important regular-
ities of the environment?

The results of our tests answer this question rather convinc-
ingly in the affirmative.

2 Background
Because forecasts have much in common with PSRs and
TD Networks, we describe these first, and do so within the
framework of Markov decision processes (MDPs). An MDP
consists of a set of states (s ∈ S), actions (a ∈ A), obser-
vations (o ∈ O) and rewards (r ∈ R). At every time step,
the agent receives an observation ot and reward rt in its cur-
rent state st and takes action at which leads the agent to the
next state st+1, depending on the state transition probabilities
T (s, a, s′) = Pr(st+1 = s′ | st = s, at = a).

PSRs represent each state as a set of features (called
“tests”) where each is a prediction about an observation
that might result from executing a specific sequence of ac-
tions. There are several varieties of PSRs with slightly dif-
ferent properties. In one sufficiently general variety, a test
q(o, a1, . . . , ak) represents the agent’s probability of making
a specific observation o after taking a specific string of k ac-
tions a1, . . . , ak:

q(o, ak) ≡ Pr(ot+k = o | at = a1, . . . , at+k = ak). (1)

3To be clear: the methods we employ for the experiments have
little practical application. Because the subject under investigation is
only the representation and not the learning, we choose a convenient
method for generating the representations and their values.

Short sequences of actions make short-term predictions;
longer sequences make longer-term predictions. If two states
are distinguishable, there will be a series of actions that can
be taken in each that will result in a different expected obser-
vation. Thus, each PSR feature has two components: (1) its
definition (i.e., specification of which observation should fol-
low which sequence of actions), and (2) its value (the proba-
bility of Equation 1) in each state.

TD Networks contain a set of nodes that each make an
action-conditional prediction either about an observation (as
with PSRs) or about the value of another node in the network.
As with PSRs, each node has two parts: a definition and a
value. The definition describes or specifies what the node is
making a prediction about, and the value is an estimate of the
predicted quantity, which can vary from state to state, and is
a learned function of the observations and features.

As with PSRs and TD Nets, a forecast or GVF also has
the same two parts: a definition and a value. Forecasts are
quite similar in spirit to the other two but are considerably
more sophisticated, general, and flexible. Rather than mak-
ing a prediction about the result of following a specific fixed
sequence of actions, a forecast predicts the result of following
an option until it terminates.

Each forecast definition consists of two parts, an option
and an outcome. The option [Sutton et al., 1999] is a 3-tuple
(π, I, β), where π is a policy, which maps states (as repre-
sented by the agent) to a probability distribution over actions;
I : S → {0, 1} is the initiation set (specifying the states in
which the policy can be started); and β : S → [0, 1] is the
termination probability (the probability of the option termi-
nating in each state). The option describes a possible way for
the agent to behave, along with conditions about where that
way of behaving can begin and end. Each forecast predicts
what the outcome will be if the option is followed (i.e., if the
agent behaves as described by the option).

The outcome is a tuple (c, z), where c : (S × A) → R is
a cumulative value defined for every state-action pair reach-
able while the option is being followed, and z : S → R is a
termination value, defined wherever termination may occur.

Thus, every forecast definition f i describes a function of
the state according to these five components:

f i(s) ≡ fπ
i,Ii,βi,ci,zi(s)

(For clarity in the description of an individual forecast, we
now drop the superscript i.)

The value of a forecast is the expected sum of all the cu-
mulative c values encountered while the option is being fol-
lowed, plus the termination value z at option termination at
some future time step k. More precisely, the forecast value
for a state s ∈ I is

f(s) = E [c1 + c2 + . . .+ ck−1 + zk | π, β, s0 = s] . (2)

Thus, the forecast value is a prediction about the expected
sum of c values while the agent is following the option, plus
the expected z value when the option terminates. To avoid
infinite sums, one may constrain β to (0,1], ensuring that all
options will eventually terminate.

Although c and z can be any function of the state, one use-
ful special case occurs when c is zero everywhere, z is binary,

and β = 1 wherever z = 1. In this case, the forecast value
represents the agent’s option-conditional probability of entry
into the set of states where z is 1.

Thus, forecasts are action-conditional predictions that are
significantly more flexible than PSRs and TD Nets. In partic-
ular, the number of steps that might elapse until termination
of a forecast is not explicit in its definition, allowing the pre-
diction of an arbitrary condition of the state within a loose
time frame. In fact, forecasts are very similar to the value
function in reinforcement learning (hence the term “general
value function”) but can be used to predict any function of
the state, not just the reward. Thus, a unique advantage of
forecasts is that their policies can be optimized to maximize
or minimize the forecasted value. We call such forecasts “ac-
tive” and distinguish them from “passive” forecasts which
have static policies.

Note that though “the forecast” is occasionally unambigu-
ous, generally one must specify whether one means the fore-
cast definition f (specification of the option and outcome)
or the forecast’s ideal value f(s) (Equation 2). And besides
these, there is also the agent’s estimate of the ideal value f̂(s),
because, just as with PSRs and TD Nets, the learning agent
must learn the values of those predictions. In work published
so far with GVFs, off-policy temporal-difference (TD) meth-
ods combined with linear function approximators are used to
calculate and make continual improvements to all the forecast
estimates at every step [Sutton et al., 2011].

3 Methods
Forecasts are complex and admit many nuances too subtle to
investigate thoroughly in a short space. We therefore choose
to focus on a narrow but important subset of the full fore-
cast, a greatly simplified version that retains some of their
most promising properties. In particular, we consider only
the cases where: I = S (all policies can be initiated in all
possible states), c(s) = 0 (there is no cumulative value in
the outcome), z(s) ∈ {0, 1}, and β(s) = 1 if z(s) = 1
but 0.1 otherwise, for s ∈ S. Thus, we study the case
where the forecast estimates the probability of terminating in
a state where z = 1, which is inversely related to the num-
ber of steps the agent needs to reach such a state. (This is
a slight departure from most papers written so far on this
method, which tend to focus on the case where z = 0 and
c is a positive value [Sutton et al., 2011; Modayil et al., 2012;
Degris and Modayil, 2012]. We find that our simplification is
as intuitive, but in some cases easier to work with.)

Many (perhaps all) papers on GVFs published so far
have focused on their usefulness in the continual-learning
paradigm, where learning occurs at every step and the agent is
always learning new things on top of what it already knows.
With that focus, an online learning algorithm is essential.
Since our goal is different—merely to test the representa-
tional abilities of the forecast mechanism—we prefer to use
batch methods to compute the ideal forecast values for small
state sets. These batch methods assume a full model of the en-
vironment and in general cannot be used to solve the learning
problem. The recent off-policy learning methods with proven
convergence guarantees (as mentioned in Section 1) remain

the methods of choice for the continual-learning case.
Just as Rafols et al. (2005) did with PSRs, we wish to cre-

ate forecasts in a canonical and automated way, from sim-
ple to complex, then measure the contribution of each as it
is added. Though there are in principle many possible ways
to do so, we have chosen a layered approach in which new
active forecasts are added that predict and attempt to achieve
values of already known features.

Forecasts are created, optimized, and evaluated in an incre-
mental process detailed in Algorithm 1 starting with forecast
f1. For simplicity, all agent observations in all our tests are
binary, and the algorithm begins with a vector of observation
functions o, where each function produces a binary value in
each state, o ∈ o : S → {0, 1}. Because they are binary,
one can view each observation function as describing a set of
states (in which the observation is 1), and Υ is an ordered list
of these sets and their complements (Line 3). For each fore-
cast f j , Ij = S (Line 6) and cj = 0 in all states (Line 8). The
z values are based on Υj , the jth state set in the list; specifi-
cally, zj(s) = 1 iff s ∈ Υj . All forecasts are active, so pol-
icy πj is optimized to maximize f j according to Equation 2
(Line 15). We use a perfect model of the environment and full
state information to calculate the ideal value for each forecast
in each state (Line 16). The median of those ideal values then
becomes a threshold (Line 17) used to split the states into two
sets that are then appended to the list Υ (Line 18). Forecast
creation continues until N forecasts have been created and
evaluated in each state.

Algorithm 1: Create N forecasts
1 Υ← ∅
2 for o in o do
3 Υ← Υ ◦ {s | o(s) = 1} ◦ {s | o(s) = 0}
4 for j ← 1 to N do
5 create forecast f j such that :
6 Ij = S
7 for s ∈ S do
8 cj(s)← 0
9 if s ∈ Υj then

10 zj(s)← 1

11 βj(s)← 1
12 else
13 zj(s)← 0

14 βj(s)← 0.1

15 πj ← optimal policy using policy iteration

16 compute f j(s) for all s ∈ S
17 Θ = medians∈S{f j(s)}
18 Υ← Υ ◦ {s | f j(s) < Θ} ◦ {s | f j(s) ≥ Θ}
19 delete duplicate sets from Υ

The above approach would not work for a true continual-
learning agent, because the agent would not have access to the
full state information of the environment (among other rea-
sons). We use it because it provides a straightforward canoni-
cal method for producing new forecasts. An actual continual-

learning agent must create forecasts based on its individual
experience, using a different methodology not yet developed.

The N ideal values for forecasts f1 to fN form a set
of features whose quality we now wish to evaluate. To
evaluate a set of features as a state representation for a
reinforcement-learning agent, we combine them with the
agent’s observations into a feature vector and then compute
the following three measurements: (1) The mean-squared
error (MSE) between the true value function V (computed
with a perfect model and full state information) and V̂ , the
best linear approximation of V based on the feature vector.
(LSTD [Bradtke et al., 1996; Boyan, 1999] with a full transi-
tion model of the task MDP computes the optimal parameters
of the linear function approximator.) This value will be des-
ignated “MSE” in our graphs. (2) The average value of each
state according to the true value function for policy π̂f , where
π̂f is the best policy that can be computed as a linear func-
tion of the feature vector (using policy iteration with LSTD
for the evaluation step). This value is designated “LSTD-PI”
in the graphs. (3) Same as (1) above but V̂ is computed using
only a randomly selected fraction of the states (specifically,
50% and 90%), averaged over 25 random selections of state
sets. These measurements provide an indicator of a feature
set’s ability to generalize to unseen parts of the state space.

Our experiments use two discrete grid worlds (Figure 1).
The first is inspired by one from Rafols et al. [2005]. The
second is designed to have regularity at varying scales. In
both, the agent has two actions: go forward or rotate 90 de-
grees left (|A| = 2). In each case, the state space consists of
position and orientation, so |S| = 4p, where p is the num-
ber of positions. The agent observes just one bit, namely
whether it has a wall immediately in front of it (|O| = 1),
and is rewarded for visiting an (invisible) goal position. Both
environments are implemented with pyvgdl [Schaul, 2013],
an open-source, video-game description language (VGDL)
in Python, which allows automatic generation of different
configurations, game mechanics (stochastic or deterministic),
and a full MDP model (matrix of exact transition probabili-
ties), from a simple description.

4 Results
The top graphs of Figures 2 and 3 show an incrementally in-
creasing number of features, which are either forecast val-
ues (generated according to Algorithm 1), or for compari-
son, PSR-test values. PSR tests are generated according to
the shortest-first method described by Rafols et al. [2005], in
which all tests of length k (having action sequences of length
k) are generated before any test of length k + 1, beginning
with k = 1.

In the lower graphs (again following Rafols et al.), states
are aggregated into as many classes as the forecasts (or PSRs)
can disambiguate. That is, each state belongs to exactly one
class, and two states belong to the same class if and only if
they cannot be distinguished by any PSR test (left) or fore-
cast (right). In these graphs, the feature vector consists of
one binary feature per class, where each feature value is 1 in
exactly those states that belong to the class. Note that some-
times multiple forecasts (or PSRs) need to be added before a

Figure 1: Two grid worlds used for the experiments. Left: A cross-
shaped corridor with 23 positions (92 states) and a reward (green
square, not visible to the agent) in one of three identical-looking
arms. The fourth arm can potentially be distinguished by the agent
and used for orientation. Right: An 82-position (328 state) world
with 7 identical-looking rooms; each with two exits, one marked by
a protruding wall (red dot for our view only, invisible to the agent).

new class arises. Other times a single forecast (or PSR) can
produce many new classes at once (see the jump in Figure 2
from 50 to 90 classes with just one additional forecast).

Figure 2 shows results for the cross task, designed to test
whether forecasts can discern and use the disambiguating fea-
ture at the end of one of the hallways, something that the
short-action-sequence PSRs should not be able to do. The
results show that the task can be solved by all measures with
as few as 80 forecast features, while PSRs fall short.

Figure 3 highlights the generalization capability of fore-
casts in the larger environment. While PSR features start
overfitting long before they allow for reasonable performance
(pink curve going off the chart in the upper left graph), fore-
cast features generalize very well: performance degrades only
minimally, even when half the states are never seen (upper
right graph). However, generalization is severely impaired,
both for PSRs and forecasts, when class features formed by
state aggregation are used instead (bottom two plots).

Figure 4 visualizes the features produced by PSRs and by
forecasts. When studied closely, these images reveal the heart
of the investigation: forecasts find important regularities in
the environment.

5 Discussion
Figures 2 and 3 show that as new forecasts are added, approx-
imation of the value function steadily improves and average
reward steadily increases, even though the reward signal plays
no role in the construction of the forecasts.

The agent’s immediate sensorimotor stream is minimally
informative, yet forecasts are able to produce features that
distinguish subtle spatial structures. Furthermore, they can
carry this information to distant states, allowing the agent to
distinguish regions of the world that are nearly identical (in
the sense that they generate identical responses to all short-
and medium-length sequences of actions). In order to choose
the best action in most of the states of Task 1, it is essential
for the agent to know which arm of the cross it is in, yet the
only information that can distinguish the arms is located at the

Figure 2: Quality of the 120 first features generated in the cross-shaped corridor world. Left column: PSR tests; right column: forecasts.
Above: The horizontal axis shows the (increasing) cumulative number of features used. Two quality measures are shown, normalized between
0 and 1:“MSE” is the mean-squared error for the best linear approximation of the optimal value function with these features, and “LSTD-PI”
shows the average expected reward for the best feature-based policy averaged across all states. The violet circles indicate how many classes
of states can be distinguished using the features: if this curve reaches 1, then all states can be disambiguated in principle (but not necessarily
by a linear function approximator). Below: Performance curves as above but feature vectors now identify which class each state belongs to.
The light blue squares indicate the fraction of total features required to distinguish the classes.

distant end of one arm. It is surprising both how readily fore-
casts are able to capture this information and how easily they
are then able to use it to distinguish all the states of the MDP.
In the case of PSRs, it is clear from Figure 2 that a very large
number of features must be constructed in shortest-first order
before this kind of information will be available everywhere
in the MDP. Furthermore, there is essentially no hope that the
fixed-length PSR features found useful for Task 1 would be
particularly useful if the length of the arms were extended. In
contrast, it seems quite likely that the forecasts generated for
a smaller cross would still be useful in a larger one.

Figure 3 investigated the generalization ability of forecasts

and showed that even with exposure to only 50% of the states,
the forecast features are sufficient to produce a good policy
and to get good evaluation of the value function using a linear
function approximator. The similarity of Figures 2 and 3 is
striking, despite the very different environments. (Although
omitted here for space considerations, we did the same exper-
iments in numerous other grid-world environments and saw
similar graphs.)

Perhaps the most striking results, though, are those of Fig-
ure 4. The distinction between the PSR approach and the
GVF approach are apparent almost instantly. Though the
first few features look similar, beyond that the differences

Figure 3: Generalization quality of the 120 first features in the 7-room grid world: PSRs (left), forecasts (right). Forecasts again drastically
outperform PSRs. Generalization is measured by leaving out a fraction (10%, yellow curve, or 50%, pink curve) of all states from the
transition data used by LSTD to generate the parameters of the linear function approximator. Both curves (each the median over 25 runs)
measure MSE, and should be compared to the red line, which is computed from complete state data.

are rather extraordinary. While nothing about Algorithm 1
requires or encourages human readability, it is surprisingly
easy to identify what many of the forecasts have captured (as
shown in the caption). In contrast, virtually none of the PSR
features can be interpreted in any meaningful way. Though
this is not necessarily a weakness of PSRs, it may be a result
of their inability to capture non-local relationships, which is
also immediately apparent from the figure.

6 Summary and Conclusions
The goal of this work was to investigate the representa-
tional promise of forecasts (GVFs) in an impartial manner.
We created a simple mechanism for producing simple fore-
casts in a breadth-first fashion and then tested their suitability
as features for a reinforcement-learning agent. We devised

two tasks rife with non-annotated structural regularity to see
whether forecasts could identify and use some of that struc-
ture. And finally, we compared the results to PSRs using a
similar generative mechanism. The results are surprisingly
clear and do unquestionably support the hypothesis that fore-
casts are capable of capturing significant and substantial en-
vironmental regularity of at least those kinds tested. They are
able to capture small-scale and large-scale relationships and
encode them in a way that is useful for task achievement and
strong generalization.

It is worth reiterating that our experiments used only a
narrow subclass of forecasts chosen to be easiest to work
with, and our forecast-creation mechanism was brute force.
(We resisted the temptation to make this process more intel-
ligent, though the possibilities here for future work imme-
diately present themselves.) Nevertheless, the power of this

Figure 4: Each of the 120 images shows the value of a given feature for each state in the 7-room grid world, as produced by PSR tests (top)
and forecasts (bottom). Walls are black, and feature values are color coded on a normalized scale from red (maximum) to white (minimum).
Each is labeled with an index indicating in which order the feature was generated. Note how many forecasts appear to encode interesting
properties of the environment: forecast 8 locates the markers; 38 identifies the dead-end corridor (where the goal will be hidden); 50 reveals
a high-level symmetry based on multiple rooms (the upper 3 are a rotated version of the lower 3); 61, corridor crossings; 69, distance to the
dead end; 76, non-room corridors that connect rooms; 88, a room that is not in a group of 3; 100, furthest point from the dead end, etc.

representation is unmistakable.

Acknowledgments
This work was funded in part through AFR postdoc grant
number 2915104, of the National Research Fund Luxem-
bourg.

References
[Boyan, 1999] Justin A. Boyan. Least-squares temporal difference

learning. In In Proceedings of the Sixteenth International Con-
ference on Machine Learning, pages 49–56. Morgan Kaufmann,
1999.

[Bradtke et al., 1996] Steven J. Bradtke, Andrew G. Barto, and
Pack Kaelbling. Linear least-squares algorithms for temporal dif-
ference learning. In Machine Learning, pages 22–33, 1996.

[Degris and Modayil, 2012] Thomas Degris and Joseph Modayil.
Scaling-up knowledge for a cognizant robot, 2012.

[Jaeger, 2000] Herbert Jaeger. Observable operator models for dis-
crete stochastic time series. Neural Computation, 12(6):1371–
1398, 2000.

[Littman et al., 2002] Michael L. Littman, Richard S. Sutton, and
Satinder Singh. Predictive representations of state. In Advances
in Neural Information Processing Systems 14. MIT Press, 2002.

[Maei and Sutton, 2010] Hamid R. Maei and Richard S. Sutton.
GQ(λ): A general gradient algorithm for temporal-difference
prediction learning with eligibility traces. In AGI’10, 2010.

[Modayil et al., 2012] Joseph Modayil, Adam White, Patrick M.
Pilarski, and Richard S. Sutton. Acquiring diverse predictive
knowledge in real time by temporal-difference learning. In Inter-
national Workshop on Evolutionary and Reinforcement Learning
for Autonomous Robot Systems, Montpellier, France, 2012.

[Rafols et al., 2005] Eddie J. Rafols, Mark B. Ring, Richard S. Sut-
ton, and Brian Tanner. Using predictive representations to im-
prove generalization in reinforcement learning. In L. P. Kaelbling
and A. Saffiotti, editors, Proceedings of the 19th International
Joint Conference on Artificial Intelligence, pages 835–840, 2005.

[Ring, 1993] Mark B. Ring. Learning sequential tasks by incre-
mentally adding higher orders. In C. L. Giles, S. J. Hanson, and
J. D. Cowan, editors, Advances in Neural Information Processing
Systems 5, pages 115–122, San Mateo, California, 1993. Morgan
Kaufmann Publishers.

[Ring, 1994] Mark B. Ring. Continual Learning in Reinforcement
Environments. PhD thesis, University of Texas at Austin, Austin,
Texas 78712, August 1994.

[Rivest and Schapire, 1994] Ronald L. Rivest and Robert E.
Schapire. Diversity-based inference of finite automata. J. ACM,
41(3):555–589, 1994.

[Schaul, 2013] Tom Schaul. PyVGDL: a video game description
language in python. https://github.com/schaul/py-vgdl, 2013.

[Sutton and Tanner, 2005] Richard S. Sutton and Brian Tanner.
Temporal-difference networks. In Advances in Neural Informa-
tion Processing Systems 17. MIT Press, 2005.

[Sutton et al., 1999] Richard S. Sutton, Doina Precup, and Satin-
der P. Singh. Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial Intelli-
gence, 112(1-2):181–211, 1999.

[Sutton et al., 2006] Richard S. Sutton, Eddie J. Rafols, and Anna
Koop. Temporal abstraction in temporal-difference networks.
In Advances in Neural Information Processing Systems 18
(NIPS*05), pages 1313–1320. MIT Press, 2006.

[Sutton et al., 2011] Richard S. Sutton, Joseph Modayil, Michael
Delp, Thomas Degris, Patrick M. Pilarski, Adam White, and
Doina Precup. Horde: a scalable real-time architecture for learn-
ing knowledge from unsupervised sensorimotor interaction. In
The 10th International Conference on Autonomous Agents and
Multiagent Systems - Volume 2, AAMAS ’11, pages 761–768,
Richland, SC, 2011. International Foundation for Autonomous
Agents and Multiagent Systems.

[Sutton, 2001] Richard S. Sutton. Verification, the key to
ai. http://webdocs.cs.ualberta.ca/ sutton/IncIdeas/KeytoAI.html/,
2001. Available online.

[Willems et al., 1995] Frans M. J. Willems, Yuri M. Shtarkov, and
Tjalling J. Tjalkens. The context tree weighting method: Basic
properties. IEEE Transactions on Information Theory, 41:653–
664, 1995.

