

Better Generalization with Forecasts

Tom Schaul Mark Ring

Which Representations?

Type: Feature-based representations

(state = feature vector)

Quality 1: Usefulness for linear policies

Quality 2: Generalization

Outline

✓ Motivation

- Representation
 - Predictive State Representations
 - General Value Functions, aka "Forecasts"
 - Simplified subclass of Forecasts
- Evaluating Generalization
- Results

Predictive State Representations

- Question/test: "Will I hit the wall if I take a step left and then a step back?"
- Expected answer = feature ϕ
- Defined as a set of testable predictions
 - Observable quantities (wall sensor)
 - Conditional on action sequence (step left, step back)
 - Open-loop (ends at t+2)

General Value Functions

- ϕ = "After how many steps will I encounter a door if I head to the the wall in front of me, and follow it clockwise?"
- General Value Functions
 - More general questions
 - Closed-loop: arbitrary length sequences
- We call them "Forecasts"

Forecast Components

- Conditional on an option: following a policy (straight+clockwise) until termination (door)
 - I: states of interest
 - β (s): termination probability
 - π : policy

- Target value (expectation): any function of the state, cumulative
 - c(s): accumulated value before termination
 - z(s): final value upon termination in s

Simplified Forecasts

- Constant components:
 - c(s) = 0
 - *I* = all states
- Defined by only a target set of states T
 - z(s): 1 if s in **T**, 0 elsewhere
 - β (s): 1 if s in **T**, 1- γ elsewhere
 - π : implicitly defined: maximizes the expected z

- → Only one free parameter: **T**
- \rightarrow Output: feature vector ϕ (s)

Outline

- ✓ Motivation
- ✓ Representations
- Evaluating Generalization
 - Ideal vs. estimated forecast values
 - Canonical forecast ordering
 - Quality measures
- Results

Forecast Values

- Distinguish:
 - Forecast definition ("question")
 - From target set T
 - Ideal forecast value (true "answer")
 - Forecast value estimate (approximation)
 - can be learned
- Focus: quality of representation
 - Use ideal forecast values as features
 - We can ignore the learning issues (i.e., we can cheat!)
 - Namely: policy iteration with transition model

Forecast Generation (1)

- Canonical (breadth-first) exhaustive generation
 - First layer based on observations
 - Forecasts can build upon other forecasts
 - Unique ordering (lexicographic tie-breaking)

Forecast Generation (2)

- Initially: observations define target sets T
- 2. Compute ideal forecast values ϕ from **T**
 - Cheat 1: transition model (infinite experience)
 - Cheat 2: knowledge of state
- 3. Threshold ϕ for new candidate **T** sets
- 4. (Ignore redundant sets)
- 5. Go to step 2, until no **T** is left

Evaluation of Feature Sets

Quality measures:

- 1. Optimal policy using linear function approximation (LFA) on features (LSTD+PI)
- Distance between estimated external value V' (using LFA on features) and true V* (MSE)

Generalization:

- consider random subset of states (e.g. 50%)
- train the LFA based on this limited experience
- see how that V' generalizes to the remaining states

Outline

- ✓ Motivation
- ✓ Representations
- ✓ Evaluating Generalization
- Results
 - Two mazes
 - Simplistic agent
 - 1 binary observation (wall sensor)
 - 1 binary action (forward/rotate left)
 - Comparison to PSRs as baseline

4-Arm-Maze: PSRs

4-Arm-Maze: Forecasts

7-Rooms-Maze: PSRs

7-Room-Maze: Forecasts

PSR Features

Forecast Features

Summary

Forecasts as representations:

- Temporal abstraction (closed-loop)
- Simple structure
- Useful features for linear evaluation and control
- Good generalization with linear FA

Future work

- Removing the cheats: using learned estimates instead of ideal forecast values
- 2. Smarter forecast generation than exhaustive