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ABSTRACT
Efficient Natural Evolution Strategies (eNES) is a novel al-
ternative to conventional evolutionary algorithms, using the
natural gradient to adapt the mutation distribution. Unlike
previous methods based on natural gradients, eNES uses a
fast algorithm to calculate the inverse of the exact Fisher in-
formation matrix, thus increasing both robustness and per-
formance of its evolution gradient estimation, even in higher
dimensions. Additional novel aspects of eNES include opti-
mal fitness baselines and importance mixing (a procedure for
updating the population with very few fitness evaluations).
The algorithm yields competitive results on both unimodal
and multimodal benchmarks.
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1. INTRODUCTION
Evolutionary algorithms aim to optimize a ‘fitness’ func-

tion that is either unknown or too complex to model di-
rectly. They allow domain experts to search for good or
near-optimal solutions to numerous difficult real-world prob-
lems in areas ranging from medicine and finance to control
and robotics.

Typically, three objectives have to be kept in mind when
developing evolutionary algorithms—we want (1) robust per-
formance; (2) few (potentially costly) fitness evaluations; (3)
scalability with problem dimensionality.

We recently introduced Natural Evolution Strategies (NES;
[8]), a new class of evolutionary algorithms less ad-hoc than
traditional evolutionary methods. Here we propose a novel
algorithm within this framework. It retains the theoretically
well-founded nature of the original NES while addressing its
shortcomings w.r.t. the above objectives.
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NES algorithms maintain and iteratively update a multi-
normal mutation distribution. Parameters are updated by
estimating a natural evolution gradient, i.e. the natural gra-
dient on the parameters of the mutation distribution, and
following it towards better expected fitness. Well-known ad-
vantages of natural gradient methods include isotropic con-
vergence on ill-shaped fitness landscapes [2]. This avoids
drawbacks of ‘vanilla’ (regular) gradients which are prone
to slow or premature convergence [4].

Our algorithm calculates the natural evolution gradient
using the exact Fisher information matrix (FIM) and the
Monte Carlo-estimated gradient. In conjunction with the
techniques of optimal fitness baselines and fitness shaping
this yields robust performance (objective 1).

To reduce the number of potentially costly evaluations
(objective 2), we introduce importance mixing, a kind of
steady-state enforcer which keeps the distribution of the new
population conformed to the current mutation distribution.

To keep the computational cost manageable in higher prob-
lem dimensions (objective 3), we derive a novel, efficient
algorithm for computing the inverse of the exact Fisher in-
formation matrix (previous methods were either inefficient
or approximate).

The resulting algorithm, Efficient Natural Evolution Strate-
gies (eNES), is elegant, requires no additional heuristics and
has few parameters that need tuning. It performs consis-
tently well on both unimodal and multimodal benchmarks.

2. EVOLUTION GRADIENTS
First let us introduce the algorithm framework and the

concept of evolution gradients. The objective is to maximize
a d-dimensional unknown fitness function f : R

d → R, while
keeping the number of function evaluations – which are con-
sidered costly – as low as possible. The algorithm iteratively
evaluates a population of size n individuals z1 . . . zn gener-
ated from the mutation distribution p (z|θ). It then uses the
fitness evaluations f(z1) . . . f(zn) to adjust parameters θ of
the mutation distribution.

Let J (θ) = E [f (z) |θ] be the expected fitness under mu-
tation distribution p (z|θ), namely,

J (θ) =

∫
f (z) p (z|θ) dz.

The core idea of our approach is to find, at each itera-
tion, a small adjustment δθ, such that the expected fitness



J (θ + δθ) is increased. The most straightforward approach
is to set δθ ∝ �θJ (θ), where �θJ (θ) is the gradient on J (θ).
Using the ‘log likelihood trick’, the gradient can be written
as

�θJ (θ) = �θ

∫
f (z) p (z|θ) dz

=

∫
f (z) �θp (z|θ) dz

=

∫
f (z)

p (z|θ)
p (z|θ)�θp (z|θ) dz

=

∫
p (z|θ) · (f (z) �θ ln p (z|θ)) dz,.

The last term can be approximated using Monte Carlo:

�s
θJ (θ) =

1

n

∑n

i=1
f (zi) �θ ln p (zi|θ) ,

where �s
θJ (θ) denotes the estimated evolution gradient.

In our algorithm, we assume that p (z|θ) is a Gaussian
distribution with parameters θ = 〈x,A〉, where x represents
the mean, and A represents the Cholesky decomposition of
the covariance matrix C, such that A is upper triangular
matrix and1 C = A�A. The reason why we choose A in-
stead of C as primary parameter is twofold. First, A makes
explicit the d (d + 1) /2 independent parameters determin-
ing the covariance matrix C. Second, the diagonal elements
of A are the square roots of the eigenvalues of C, so A�A
is always positive semidefinite. In the rest of the text, we
assume θ is column vector of dimension ds = d+d (d + 1) /2
with elements in 〈x,A〉 arranged as

[(
θ0)� ,

(
θ1)� . . .

(
θd

)�]�
.

Here θ0 = x and θk = [ak,k . . . ak,d]
� for 1 ≤ k ≤ d, where

ai,j (i ≤ j) denotes the (i, j)-th element of A.
Now we compute

g (z|θ) = �θ ln p (z|θ)
= �θ{d

2
ln 2π − 1

2
ln |A|2

−1

2

(
A−� (z− x)

)� (
A−� (z− x)

)
},

where g (z|θ) is assumed to be a ds-dimensional column vec-
tor. The gradient w.r.t. x is simply

�x ln p (z|θ) = C− (z− x) .

The gradient w.r.t. ai,j (i ≤ j) is given by

∂

∂ai,j
ln p (z|θ) = ri,j − δ (i, j) a−1

i,i ,

where ri,j is the (i, j)-th element of

R = A−� (z− x) (z− x)� C−

and δ (i, j) is the Kronecker Delta function.
From g (z|θ), the mutation gradient �s

θJ (θ) can be com-
puted as �s

θJ (θ) = 1
n
Gf , where G = [g (z1|θ) . . .g (zn|θ)],

and f = [f (z1) . . . f (zn)]�. We update θ by δθ = η�s
θJ (θ),

where η is an empirically tuned step size.

1For any matrix Q, Q− denotes its inverse and Q� denotes
its transpose.

3. NATURAL GRADIENT
Vanilla gradient methods have been shown to converge

slowly in fitness landscapes with ridges and plateaus. Nat-
ural gradients [1] constitute a principled approach for deal-
ing with such problems. The natural gradient, unlike the
vanilla gradient, has the advantage of always pointing in the
direction of the steepest ascent. Furthermore, since the nat-
ural gradient is invariant w.r.t. the particular parameteriza-
tion of the mutation distribution, it can cope with ill-shaped
fitness landscapes and provides isotropic convergence prop-
erties, which prevents premature convergence on plateaus
and avoids overaggressive steps on ridges [1].

In this paper, we consider a special case of the natural
gradient �̃θJ , defined as

δθ��̃θJ = max
δθ

J (θ + δθ) ,

s.t. KL (θ + δθ||θ) = ε,

where ε is an arbitrarily small constant and KL (θ′||θ) de-
notes the Kullback-Leibler divergence between distributions
p (z|θ′) and p (z|θ). The constraints impose a geometry on
θ which differs from the plain Euclidean one. With ε → 0,
the natural gradient �̃θJ satisfies the necessary condition
F�̃θJ = �θJ , with F being the Fisher information matrix:

F = E

[
�θ ln p (z|θ) �θ ln p (z|θ)�

]
.

If F is invertible, which may not always be the case,
the natural gradient can be uniquely identified by �̃θJ =
F−�θJ , or estimated from data using F−�s

θJ . The adjust-
ment δθ can then be computed by

δθ = ηF−�s
θJ .

In the following sub-sections, we show that the FIM can
in fact be computed exactly, that it is invertible, and that
there exists an efficient2 algorithm to compute the inverse
of the FIM.

3.1 Derivation of the Exact FIM
In the original NES [8], we compute the natural evolu-

tion gradient using the empirical Fisher information matrix,
which is estimated from the current population. This ap-
proach has three important disadvantages. First, the em-
pirical FIM is not guaranteed to be invertible, which could
result in unstable estimations. Second, a large population
size would be required to approximate the exact FIM up to a
reasonable precision. Third, it is highly inefficient to invert
the empirical FIM, a matrix with O

(
d4

)
elements.

We circumvent these problems by computing the exact
FIM directly from mutation parameters θ, avoiding the po-
tentially unstable and computationally costly method of es-
timating the empirical FIM from a population which in turn
was generated from θ.

In eNES, the mutation distribution is the Gaussian de-
fined by θ = 〈x,A〉, the precise FIM F can be computed
analytically. Namely, the (m,n)-th element in F is given by

(F)m,n =
∂x�

∂θm
C− ∂x

∂θn
+

1

2
tr

(
C− ∂C

∂θm
C− ∂C

∂θn

)
,

where θm, θn denotes the m-th and n-th element in θ. Let
im, jm be the aim,jm such that it appears at the (d + m)-th

2Normally the FIM would involve d2
s = O

(
d4

)
parameters,

which is intractable for most practical problems.



position in θ. First, notice that

∂x�

∂xi
C− ∂x

∂xj
=

(
C−)

i,j
,

and

∂x�

∂ai1,j1

C− ∂x

∂ai2,j2

=
∂x�

∂xi
C− ∂x

∂aj,k
= 0.

So the upper left corner of the FIM is C−, and F has the
following shape

F =

[
C− 0
0 FA

]
.

The next step is to compute FA. Note that

(FA)m,n =
1

2
tr

[
C− ∂C

∂aim,jm

C− ∂C

∂ain,jn

]
.

Using the relation

∂C

∂ai,j
=

∂

∂ai,j
A�A =

∂A�

∂ai,j
A + A� ∂A

∂ai,j
,

and the properties of the trace, we get

(FA)m,n = tr

[
A− ∂A

∂aim,jm

A− ∂A

∂ain,jn

]

+ tr

[
∂A

∂aim,jm

C− ∂A�

∂ain,jn

]
.

Computing the first term gives us

tr

[
A− ∂A

∂aim,jm

A− ∂A

∂ain,jn

]
=

(
A−)

jn,im

(
A−)

jm,in
.

Note that since A is upper triangular, A− is also upper
triangular, so the first summand is non-zero iff

in = im = jn = jm.

In this case,
(
A−)

jn,im
=

(
A−)

jm,in
= a−1

jn,im
, so

tr

[
A− ∂A

∂aim,jm

A− ∂A

∂ain,jn

]
= a−2

im,in
δ (im, in, jm, jn) .

Here δ (·) is the generalized Kronecker Delta function, i.e.
δ (im, in, jm, jn) = 1 iff all four indices are the same. The
second term is computed as

tr

[
∂A

∂aim,jm

C− ∂A�

∂ain,jn

]
=

(
C−)

jn,jm
δ (in, im) .

Therefore, we have

(FA)m,n =
(
C−)

jn,jm
δ (in, im) + a−2

im,in
δ (im, in, jm, jn) .

It can easily be proven that FA itself is a block diagonal
matrix with d blocks along the diagonal, with sizes ranging
from d to 1. Therefore, the precise FIM is given by

F =

⎡
⎢⎢⎢⎣

F0

F1

. . .

Fd

⎤
⎥⎥⎥⎦ ,

with F0 = C− and block Fk (d ≥ k ≥ 1) given by

Fk =

[
a−2

k,k 0
0 0

]
+ Dk.

Here Dk is the lower-right square submatrix of C− with
dimension d + 1− k, e.g. D1 = C−, and Dd =

(
C−)

d,d
.

We prove that the FIM given above is invertible if C is
invertible. Fk (1 ≤ k ≤ d) being invertible follows from the
fact that the submatrix Dk on the main diagonal of a pos-
itive definite matrix C− must also be positive definite, and
adding a−2

k,k > 0 to the diagonal would not decrease any of

its eigenvalues. Also note that F0 = C− is invertible, so F
is invertible.

It is worth pointing out that the block diagonal structure
of F partitions parameters θ into d + 1 orthogonal groups
θ0 . . . θk, which suggests that we could modify each group
of parameters without affecting other groups. We will need
this intuition in the next section.

3.2 Iterative Computation of FIM Inverse
The exact FIM is a block diagonal matrix with d+1 blocks.

Normally, inverting the FIM requires d matrix inversions.
However, we can explore the structure of each sub-block in
order to make the inverse of F more efficient, both in terms
of time and space complexity.

First, we realize that Fd is simply a number, so its in-

version is given by F−
d =

((
C−)

d,d
+ a−2

d,d

)−1

, and similarly

D−
d =

((
C−)

d,d

)−1

. Now, letting k vary from d − 1 to 1,

we can compute F−
k and D−

k directly from D−
k+1. By block

matrix inversion[
P11 P12

P21 P22

]−
=

[
Q−

1 −P−
11P12Q

−
2

−Q−
2 P21P

−
11 Q−

2

]
,

using

Q1 = P11 −P12P
−
22P21, Q2 = P22 −P21P

−
11P12,

and the Woodbury identity

Q−
2 =

[
P22 + P21

(−P−
11

)
P�

21

]−

= P−
22 −P−

22P21

[
−P11 + P�

21P
−
22P21

]−
P�

21P
−
22,

(also noting that in our case, P11 is a number
(
C−)

k,k
), we

can state

Q−
2 = P−

22 −
(
P−

22P21

) (
P−

22P21

)�
P�

21P
−
22P21 −P11

.

This can be computed directly from P−
22, i.e. D−

k+1. Skipping
the intermediate steps, we propose the following algorithm
for computing F−

k and D−
k from D−

k+1:

v =
(
C−)

k+1:d,k
, w =

(
C−)

k,k
, u = D−

k+1v,

s = v�u, q = (w − s)−1 , qF = (wF − s)−1 ,

c = −w−1 (1 + qs) , cF = −w−1
F (1 + qF s) ,

F−
k =

[
qF cF u�

cF u� D−
k+1 + qF uu�

]
,

D−
k =

[
q cu�

cu� D−
k+1 + quu�

]
.

Here
(
C−)

k+1:d,k
is the sub-vector in C− at column k, and

row k + 1 to d. A single update from D−
k+1 to F−

k and

D−
k requires O

(
(d− k)2

)
floating point multiplications. The



overall complexity of computing all sub-blocks F−
k , 1 ≤ k ≤

d, is thus O
(
d3

)
.

The algorithm is efficient both in time and storage in the
sense that, on one hand, there is no explicit matrix inversion,
while on the other hand, the space for storing Dk (including
Fk, if not needed later) can be reclaimed immediately after
each iteration, which means that at most O

(
d2

)
storage is

required. Note also that F−
k can be used directly to compute

δθk, using δθk = F−
k Gkf , where

Gk =
[
gk (z1) , . . . ,gk (zn)

]

= [�θk ln p (z|θ) , . . . , �θk ln p (z|θ)]
is the submatrix of G w.r.t. the mutation gradient of θk.

To conclude, the algorithm given above efficiently com-
putes the inverse of the exact FIM, required for computing
the natural mutation gradient.

4. OPTIMAL FITNESS BASELINES
The concept of fitness baselines, first introduced in [8],

constitutes an efficient variance reduction method for esti-
mating δθ. However, baselines as found in [5] are suboptimal
w.r.t. the variance of δθ, since this FIM may not be invert-
ible. It is difficult to formulate the variance of δθ directly.
However, since the exact FIM is invertible and can be com-
puted efficiently, we can in fact compute an optimal baseline
for minimizing the variance of δθ, given by

Var (δθ) = η2
E[

(
F−�s

θJ − E
[
F−�s

θJ
])�

· (F−�s
θJ − E

[
F−�s

θJ
])

],

where �s
θJ is the estimated evolution gradient, which is

given by

�s
θJ =

1

n

∑n

i=1
[f (zi)− b] �θ ln p (zi|θ) .

The scalar b is called the fitness baseline. Adding b does not
affect the expectation of �s

θJ , since

E [�s
θJ ] = �θ

∫
(f (z)− b) p (z|θ) dz

= �θ

∫
f (z) p (z|θ) dz.

However, the variance depends on the value of b, i.e.

Var (δθ) ∝ b2
E

[(
F−G1

)� (
F−G1

)]

−2bE
[(

F−Gf
)� (

F−G1
)]

+ const.

Here 1 denotes a n-by-1 vector filled with 1s. The optimal
value of the baseline is

b =
E

[(
F−Gf

)� (
F−G1

)]

E

[
(F−G1)� (F−G1)

] .

Assuming individuals are i.i.d., b can be approximated from
data by

b �
∑n

i=1 f (zi)
(
F−g (zi)

)� (
F−g (zi)

)
∑n

i=1 (F−g (zi))
� (F−g (zi))

.

In order to further reduce the estimation covariance, we
can utilize a parameter-specific baseline for each parameter

θj individually, which is given by

bj =
E [(hjGf) (hjG1)]

E [(hjG1) (hjG1)]
�

∑n
i=1 f (zi) (hjg (zi))

2

∑n
i=1 (hjg (zi))

2 .

Here hj is the j-th row vector of F−.
However, parameter-specific baseline values θj might re-

duce variance too much, which harms the performance of the
algorithm. Additionally, adopting different baseline values
for correlated parameters may affect the underlying struc-
ture of the parameter space, rendering estimations unreli-
able. To address both of these problems, we follow the in-
tuition that if the (m, n)-th element in the FIM is 0, then
parameters θm and θn are orthogonal and only weakly cor-
related. Therefore, we propose using the block fitness base-
line, i.e. a single baseline bk for each group of parameters
θk, 0 ≤ k ≤ d. Its formulation is given by

bk =
E

[(
F−

k Gkf
) (

F−
k Gk1

)]
E

[(
F−

k Gk1
) (

F−
k Gk1

)]

�
∑n

i=1 f (zi)
(
F−

k gk (zi)
)� (

F−
k gk (zi)

)
∑n

i=1

(
F−

k gk (zi)
)� (

F−
k gk (zi)

) .

Here F−
k denotes the inverse of the k-th diagonal block of

F−, while Gk and gk denote the submatrices corresponding
to differentiation w.r.t. θk.

In a companion paper [7], we empirically investigated the
convergence properties when using the various types of base-
line. We found block fitness baselines to be very robust,
whereas uniform and parameter-specific baselines sometimes
led to premature convergence.

The main complexity for computing the optimal fitness
baseline pertains to the necessity of storing a potentially
large gradient matrix G, with dimension ds × n ∼ O

(
nd2

)
.

The time complexity, in this case, is O
(
nd3

)
since we have

to multiply each F−
k with Gk. For large problem dimen-

sions, the storage requirement may not be acceptable since
n also scales with d. We solve this problem by introducing
a time-space tradeoff which reduces the storage requirement
to O

(
d2

)
while keeping the time complexity unchanged.

In particular, we first compute for each k, a scalar uk =
a−

k (z− x), where a−
k is the k-th row vector of A−. Then,

for 1 ≤ i ≤ n, we compute the vector v =
(
C−)

k:d
(z− x),

where
(
C−)

k:d
is the submatrix of C− by taking rows k to

d. The gradient gk (zi) can be computed from uk and v,
and used to compute F−

k gk (zi) directly. The storage for

gk (zi) can be immediately reclaimed. Finally, the complex-
ity of computing gk (zi) for all i is O (nd (d− k)), so the
total complexity of computing every element in G would
still be O

(
nd3

)
.

5. IMPORTANCE MIXING
At each generation, we evaluate n new individuals gen-

erated from mutation distribution p (z|θ). However, since
small updates ensure that the KL divergence between con-
secutive mutation distributions is generally small, most new
individuals will fall in the high density area of the previ-
ous mutation distribution p (z|θ′). This leads to redundant
fitness evaluations in that same area.

Our solution to this problem is a new procedure called
importance mixing, which aims to reuse fitness evaluations



from the previous generation, while ensuring the updated
population conforms to the new mutation distribution.

Importance mixing works in two steps: In the first step,
rejection sampling is performed on the previous population,
such that individual z is accepted with probability

min

{
1, (1− α)

p (z|θ)
p (z|θ′)

}
.

Here α ∈ [0, 1] is the minimal refresh rate. Let na be the
number of individuals accepted in the first step. In the sec-
ond step, reverse rejection sampling is performed as follows:
Generate individuals from p (z|θ) and accept z with proba-
bility

max

{
α, 1− p (z|θ′)

p (z|θ)
}

until n−na new individuals are accepted. The na individu-
als from the old generation and n−na newly accepted indi-
viduals together constitute the new population. Note that
only the fitnesses of the newly accepted individuals need
to be evaluated. The advantage of using importance mix-
ing is twofold: On the one hand, we reduce the number of
fitness evaluations required in each generation, on the other
hand, if we fix the number of newly evaluated fitnesses, then
many more fitness evaluations can potentially be used to
yield more reliable and accurate gradients.

The minimal refresh rate α lower bounds the expected
proportion of newly evaluated individuals ρ = E

[
n−na

n

]
,

namely ρ ≥ α, with the equality holding iff θ = θ′. In
particular, if α = 1, all individuals from the previous gen-
eration will be discarded, and if α = 0, ρ depends only
on the distance between p (z|θ) and p (z|θ′). Normally we
set α to be a small positive number, e.g. 0.01, to avoid
too low an acceptance probability at the second step when
p (z|θ′) /p (z|θ) � 1.

It can be proven that the updated population conforms
to the mutation distribution p (z|θ). In the region where
(1− α) p (z|θ) /p (z|θ′) ≤ 1, the probability that an individ-
ual from previous generations appears in the new population
is

p
(
z|θ′) · (1− α) p (z|θ) /p

(
z|θ′) = (1− α) p (z|θ) .

The probability that an individual generated from the sec-
ond step entering the population is αp (z|θ), since

max
{
α, 1− p

(
z|θ′) /p (z|θ)} = α.

So the probability of an individual entering the population
is just p (z|θ) in that region. The same result holds also for
the region where (1 − α) p (z|θ) /p (z|θ′) > 1.

In a companion paper [7], we measured the usefulness of
importance mixing, and found that it reduces the number
of required fitness evaluations by a factor 5. Additionally, it
reduced the algorithm’s sensitivity to the population size.

The computational complexity of importance mixing can
be analyzed as follows. For each generated individual z, the
probability p (z|θ) and p (z|θ′) need to be evaluated, requir-
ing O

(
d2

)
computations. The total number of individuals

generated is bounded by n/α in the worst case, and is close
to n on average.

6. FITNESS SHAPING
For problems with wildly fluctuating fitnesses, the gradi-

ent is disproportionately distorted by extreme fitness values,

which can lead to premature convergence or numerical in-
stability. To overcome this problem, we use fitness shaping,
an order-preserving nonlinear fitness transformation func-
tion [8]. The choice of (monotonically increasing) fitness
shaping function is arbitrary, and should therefore be consid-
ered to be one of the tuning parameters of the algorithm. We
have empirically found that ranking-based shaping functions
work best for various problems. The shaping function used
for all experiments in this paper was fixed to f ′(z) = 2i− 1
for i > 0.5 and f ′(z) = 0 for i < 0.5, where i denotes the rel-
ative rank of f (z) in the population, scaled between 0 . . . 1.

7. EFFICIENT NES
Integrating all the algorithm elements introduced above,

the Efficient Natural Evolution Strategy (with block fitness
baselines) can be summarized as

1 initialize A← I
2 repeat
3 compute A−, and C− = A−A−�

4 update population using importance mixing
5 evaluate f (zi) for new zi

6 compute rank-based fitness shaping f̂
7 for k = d to 0
8 compute the exact FIM inverse F−

k

9 u← 0, v ← 0, s1 ← 0, s2 ← 0
10 for i = 1 to n
11 q← F−

k gk (zi)

12 u← u + f̂ (zi)q
13 v ← v + q

14 s1 ← s1 + f̂ (zi)q
�q

15 s2 ← s2 + q�q
16 end
17 bk ← s1/s2

18 δθk ← u− bkv
19 end
20 θ ← θ + ηδθ
21 until stopping criteria is met

Note that vectors u and v in line 18 correspond to F−
k Gkf

and F−
k Gk1, respectively. Summing up the analysis from

previous sections, the time complexity of processing a sin-
gle generation is O

(
nd3

)
, while the space complexity is just

O
(
d2 + nd

)
, where O (nd) comes from the need of storing

the population. Assuming that n scales linearly with d, our
algorithms scales linearly in space and quadratically in time
w.r.t. the number of parameters, which is O

(
d2

)
. This is a

significant improvement over the original NES, whose com-
plexity is O

(
d4

)
in space and O

(
d6

)
in time.

Implementations of eNES are available in both Python
and Matlab3.

8. EXPERIMENTS
The tunable parameters of Efficient Natural Evolution

Strategies are comprised of the population size n, the learn-
ing rate η, the refresh rate α and the fitness shaping function.
In addition, three kinds of fitness baselines can be used.

We empirically find a good and robust choice for the learn-
ing rate η to be 1.0. On some (but not all) benchmarks the

3The Python code is part of the PyBrain machine learning
library (www.pybrain.org) and the Matlab code is available
at www.idsia.ch/~sun/enes.html
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Figure 1: Results on the unimodal benchmark func-
tions for dimension 5, 15 and 50 (from top to bot-
tom).
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Figure 2: Success percentages varying with initial
distances for the multimodal test functions using
population sizes 20 and 100.

performance can be further improved by more aggressive up-
dates. Therefore, the only parameter that needs tuning in
practice is the population size, which is dependent on both
the expected ruggedness of the fitness landscape and the
problem dimensionality.

8.1 Benchmark Functions
We empirically validate our algorithm on 9 unimodal and

4 multimodal functions out of the set of standard bench-
mark functions from [6] and [3], that are typically used in
the literature, for comparison purposes and for competitions.
We randomly choose the inital guess at average distance 1
from the optimum. In order to prevent potentially biased
results, we follow [6] and consistently transform (by a com-
bined rotation and translation) the functions’ inputs, mak-
ing the variables non-separable and avoiding trivial optima
(e.g. at the origin). This immediately renders many other
methods virtually useless, since they cannot cope with corre-
lated mutation directions. eNES, however, is invariant under
translation and rotation. In addition, the rank-based fitness
shaping makes it invariant under order-preserving transfor-
mations of the fitness function.

8.2 Performance on Benchmark Functions
We ran eNES on the set of unimodal benchmark functions

with dimensions 5, 15 and 50 with population sizes 50, 250
and 1000, respectively, using η = 1.0 and a target precision
of 10−10. Figure 1 shows the average performance over 20
runs (5 runs for dimension 50) for each benchmark function.
We left out the Rosenbrock function on which eNES is one
order of magnitude slower than on the other functions (e.g.
150,000 evaluations on dimension 15). Presumably this is
due to the fact that the principal mutation direction is up-
dated too slowly on complex curvatures. Note that SharpR
and ParabR are unbounded functions, which explains the
abrupt drop-off.

For the experiments on the multimodal benchmark func-
tions we varied the distance of the initial guess to the opti-
mum between 0.1 and 1000. Those runs were performed on
dimension 2 with a target precision of 0.01, since here the
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Figure 3: Evolution path and mutation distributions
for a typical run on Rastrigin. Ellipsoids correspond
to 0.5 standard deviations of the mutation distribu-
tions in generations 1, 20, 40.

focus was on avoiding local maxima. We compare the re-
sults for population size 20 and 100 (with η = 1.0). Figure 2
shows, for all tested multimodal functions, the percentage of
100 runs where eNES found the global optimum (as opposed
to it getting stuck in a local extremum) conditioned on the
distance from the initial guess to the optimum.

Note that for Ackley and Griewank the success probabil-
ity drops off sharply at a certain distance. For Ackley this
is due to the fitness landscapes providing very little global
structure to exploit, whereas for Giewank the reason is that
the local optima are extremely large, which makes them vir-
tually impossible to escape from4. Figure 3 shows the evo-
lution path of a typical run on Rastrigin, and the ellipses
corresponding to the mutation distribution at different gen-
erations, illustrating how eNES jumps over local optima to
reach the global optimum.

For three functions we find that eNES finds the global
optimum reliably, even with a population size as small as
20. For the other one, Rastrigin, the global optimum is only
reliably found when using a population size of 100.

9. DISCUSSION
Unlike most evolutionary algorithms, eNES boasts a rel-

atively clean derivation from first principles. Using a full
multinormal mutation distribution and fitness shaping, the
eNES algorithm is invariant under translation and rotation
and under order-preserving transformations of the fitness
function.

Comparing our empirical results to CMA-ES [3], consid-
ered by many to be the ‘industry standard’ of evolutionary
computation, we find that eNES is competitive but slower,
especially on higher dimensions. However, eNES is faster

4A solution to this would be to start with a significantly
larger initial C, instead of I

on DiffPow for all dimensions. On multimodal benchmarks
eNES is competitive with CMA-ES as well, as compared to
the results in [8]. Our results, together with the ones on the
non-Markovian double pole balancing task reported in [7],
collectively show that eNES can compete with state of the
art evolutionary algorithms on standard benchmarks.

Future work will also address the problems of automat-
ically determining good population sizes and dynamically
adapting the learning rate. Moreover, we plan to investi-
gate the possibility of combining our algorithm with other
methods (e.g. Estimation of Distribution Algorithms) to ac-
celerate the adaptation of covariance matrices, improving
performance on fitness landscapes where directions of ridges
and valleys change abruptly (e.g. the Rosenbrock bench-
mark).

10. CONCLUSION
Efficient NES is a novel alternative to conventional evo-

lutionary algorithms, using a natural evolution gradient to
adapt the mutation distribution. Unlike previous natural
gradient methods, eNES quickly calculates the inverse of the
exact Fisher information matrix. This increases robustness
and accuracy of the evolution gradient estimation, even in
higher-dimensional search spaces. Importance mixing pre-
vents unnecessary redundancy embodied by individuals from
earlier generations. eNES constitutes a competitive, theoret-
ically well-founded and relatively simple method for artificial
evolution. Good results on standard benchmarks affirm the
promise of this research direction.
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