
Towards a Video Game Description Language
Marc Ebner1, John Levine2, Simon M. Lucas3, Tom Schaul4,
Tommy Thompson5, and Julian Togelius6

1 Ernst Moritz Arndt Universität Greifswald, Institut für Mathematik und
Informatik
marc.ebner@uni-greifswald.de

2 Department of Computer and Information Science, University of Strathclyde
john.levine@strath.ac.uk

3 School of Computer Science and Electrical Engineering, University of Essex
sml@essex.ac.uk

4 Courant Institute of Mathematical Sciences, New York University, New York
schaul@cims.nyu.edu

5 School of Computing and Mathematics, University of Derby
t.thompson@derby.ac.uk

6 Center for Games Research, IT University of Copenhagen
julian@togelius.com

Abstract
As participants in this Dagstuhl session address the challenge of General Video Game Playing

(GVGP), we have recognised the need to create a Video Game Description Language (VGDL).
Unlike General Game Playing, we have envisioned GVGP will not require a prescribed language to
facilitate understanding of the logic of the game: requiring the computational agent to ascertain
these facts for itself. However, we would still require means to define the wide range of problems
the GVGP agents may face for the purpose of classification. Not only would such a language
provide means to encapsulate the features and mechanics of a game for the purposes of human
understanding, but also provide context for the evaluation of GVGP agents having completed
playing.

Outside of the issues of classification, there is also the opportunity for automatic game gen-
eration. Given the intent of the GVGP group to work within a framework akin to the one of
the Physical Travelling Salesman Problem (PTSP), we aim to attach a code-base to the VGDL
compiler that derives implementations of these games from the definition that can be used in con-
junction with GVGP. Implementing such a compiler could provide numerous opportunities; users
could modify existing games very quickly, or have a library of existing implementations defined
within the language (e.g. an Asteroids ship or a Mario avatar) that have pre-existing, paramet-
erised behaviours that can be customised for the users specific purposes. Provided the language
is fit for purpose, automatic game creation could be explored further through experimentation
with machine learning algorithms, furthering research in game creation and design.

In order for both of these perceived functions to be realised and to ensure it is suitable for a
large user base we recognise that the language carries several key requirements. Not only must it
be human-readable, but retain the capability to be both expressive and extensible whilst equally
simple as it is general. In our preliminary discussions, we sought to define the key requirements
and challenges in constructing a new VGDL that will become part of the GVGP process. From
this we have proposed an initial design to the semantics of the language and the components
required to define a given game. Furthermore, we applied this approach to represent classic
games such as Space Invaders, Lunar Lander and Frogger in an attempt to identify potential
problems that may come to light.

In summary, our group has agreed on a series of preliminary language components and started
to experiment with forms of implementation for both the language and the attached framework.
In future we aim to realise the potential of the VGDL for the purposes of Procedural Content

© Marc Ebner, John Levine, Simon M. Lucas, Tom Schaul, Tommy Thompson and Julian Togelius;
licensed under Creative Commons License NC-ND

Dagstuhl Seminar on Artificial and Computational Intelligence in Games.
Editor: Editor; pp. 1–17

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/


2 Video Game Description Language

Generation, Automatic Game Design and Transfer Learning and how the roadmap for GVGP
can provide opportunities for these areas.

Keywords and phrases Video games, description language, language construction

Digital Object Identifier 10.4230/DFU.xxx.yyy.p

1 Motivation

Recent discussions at the Dagstuhl seminar on Artificial and Computational Intelligence in
Games addressed the challenge of extending the principles of General Game Playing (GGP)
to video games. While the rationale and challenges facing research in General Video Game
Playing (GVGP) is the focus of another report in these proceedings, the need for a Game
Description Language (GDL) designed to suitably express the key concepts and mechanics
inherent in video games became apparent. This has led to this report exploring the challenges
and potential pitfalls faced in creating a Video Game Description Language (VGDL) that
will work as part of the GVGP process.

The focus of traditional GDLs is to express components expected in the state of a game,
and the rules that induce transitions, resulting in a state-action space. Typically, GDLs
for use in GGP competitions conform to a set-theoretic language that expresses atomic
facts in predicate logic. One of the more popular examples: the GDL component of the
Stanford General Game Playing Competition employs this approach to define discrete games
of complete information (4). While this provides means to define and subsequently generate
games that conform to this particular set, the language is ill-suited for defining video game
environments. This is due to a number of factors:

Nondeterministic behaviour in video games as a result of non-player characters (NPCs)
or elements of chance are common.
Decisions for actions in video games can be attributed to player input or prescribed NPC
behaviour. These decisions are no longer turn-based and may occur simultaneously at
any step of the game.
Video game environments may employ continuous or temporal effects, real-time physics
and context-based collisions or interactions between combinations of players and artefacts.
Part of the player’s task is learning to predict those dynamics.
Typical video games use much larger environments than board games for the player to
interact with. However, the player-environment interactions are sparse, meaning that a
part of the environment complexity is rarely or never influencing decision making.

These factors among others present an interesting research challenge in its own right: to
try and maintain a balance between simplicity and generality in a description language whilst
ensuring it is suitably expressive. Driven by these factors and the challenge they represent,
we have raised key goals that shape our aspirations:

To define a GDL that supports the core mechanics and behaviour expected of classical
2D video games.
To ensure the VGDL defined will support the work being developed in the GVGP
discussion group.
Define a language that is sufficient not only to represent a game to the human reader,
but also for a compiler to generate an instance of the game.



Ebner, Levine, Lucas, Schaul, Thompson and Togelius 3

Provide a VGDL that is unambiguous, extensible and tractable that could provide
opportunities for Procedural Content Generation (PCG).

In this report, we consolidate the key points raised by the authors as we explored the
challenges and impact of expanding the current research in Game Description Languages for
Video Games to further these design goals. We highlight the current state-of-the-art in the
field, the core criteria and considerations for the design and subsequent construction of a
VGDL, the challenges the problem domain will impose, the potential for future research and
collaboration and finally highlight preliminary steps in developing a VGDL prototype.

2 Previous work

Several attempts have been made in the past to model aspects of both simple arcade games
and board games. Most of them had the purpose of being able to generate complete games
(through evolutionary computation or constraint satisfaction) but there have also been
attempts at modelling games for the purposes of game design assistance.

The Stanford General Game Playing Competition defines its games in a special-purpose
language based on first-order logic (4). This language is capable of modelling a very large
space of games, as long as they are perfect information, turn-taking games; those games
that can practically be modelled with the Stanford GDL tend to be board games or games
that share similar qualities. The language is very verbose: an example definition of Tic-
Tac-Toe runs to three pages of code. We do not know of any automatically generated game
descriptions using this GDL, but even if they exist, their space is unlikely to be suitable for
automatic search, as any change to a game is likely to result in an unplayable and perhaps
even semantically inconsistent game.

One noteworthy attempt at describing and evolving board games is Browne’s Ludi
language and the system powered by this language that evolves complete board games (1).
The Ludi system is a high-level language, and expressly limited to a relatively narrow domain
of two-player “recombination games”, i.e. turn-based board games with a restricted set
of boards and pieces, and with perfect information. The primitives of the Ludi GDL are
high-level concepts such as “tiling”, “players black white” etc. As the language was expressly
designed to be used for automatic game generation it is well suited to search, and most
syntactically correct variations on existing game descriptions yield playable games.

Also related is the Casanova language developed by Maggiore (6), now an open source
project (2). Casanova is a high-level programming language with particular constructs
that make certain aspects of games programming especially straightforward, such as the
update/display loop, and efficient collision detection. However, it is significantly lower level
than the VGDL developed here and its complex syntax would means that it is unsuitable as
it stands for evolving new games.

Moving from the domain of board games to video games that feature continuous or semi-
continuous time and space, only a few attempts exist, all of them relatively limited in scope
and capabilities. Togelius and Schmidhuber created a system which evolved simple game rules
in a very confined rule space (10). The game ontology featured red, blue and green things
(where a thing could turn out to be an enemy, a helper, a power-up or perhaps something
else), and a player agent. These could move about in a grid environment and interact. The
rules defined the initial number of each thing, the score goal and time limit, how each type
of thing moved, and an interaction matrix. The interaction matrix specified when things of
different colours collided with each other, and with the player agent; interactions could have



4 Video Game Description Language

effects such as teleporting or killing things or the agent, or increasing and decreasing the
score. Using this system, it was possible to generate very simple Pac-Man-like games.

Togelius and Schmidhuber’s system inspired Smith and Mateas to create Variations
Forever, which features a somewhat expanded search space along the same basic lines, but a
radically different representation (9). The rules are encoded as logic statements, generated
using Answer Set Programming (ASP (5)) in response to various specified constraints. For
example, it is possible to ask the generator to generate a game which is winnable by pushing a
red thing into a blue thing; if such a game exists in the design space, ASP will find it. Another
system that took the same inspiration to another direction is Cook et al.’s ANGELINA,
which expands the design space by generating not only rules but also other aspects of the
game, particularly levels, concurrently (3). The Inform system (8) permits specifying text
adventure games, coded in natural language. Further, Mahlmann et al.’s work on a Strategy
Game Description Language, used for representing and generating turn-based strategy games,
should also be mentioned (7).

As far as we are of, no game description language can represent even simple arcade games
of the type playable on an Atari 2600 with any fidelity. For example, the physics of Lunar
Lander, the destructible bases of Space Invader or the attachment of the frog to the logs in
Frogger cannot be modelled by existing GDL’s.

Aside from generating rules, there are a number of applications of evolutionary computa-
tion to generate other types of content for games; see (11) for a survey.

3 Criteria and considerations

During our initial discussions, we identified what core critera would be required for any
resulting VGDL. These criteria are instrumental in ensuring the original goals introduced in
Section 1:

Human-readable: We want to ensure a simplicity in the structure of the language that
ensures a human reader can quickly formulate new definitions or understand existing
ones through high level language.
Unambiguous, and easy to parse into actual games: We intend for the software
framework attached to the language to be able to instantly generate working prototypes
of the defined games through a simple parsing process. The game mechanics and concepts
transfer between games and, where possible, between classes of games.
Searchable/tractable: A representation of the game components in a concise tree
structure allows for generative approaches like genetic programming, specifically leading
to natural cross-over operators.
Expressive: The language must be suitably expressive to represent the core mechanics
and objects one expects of classical 2D video games. Most of these aspects are by design
encapsulated, simplifying the language and drastically reducing the code required to
define them.
Extensible: Many game types, components and dynamics can be added any time, by
augmenting the language vocabulary with new encapsulated implementations.
Legal & viable for randomly generated games: all game components and dynamics
have ‘sensible defaults’, which make them as likely as possible to inter-operate well with
a large share of randomly specified other components.

These criteria are considered as we move into the subsequent section, in which we discuss
how we envisage the structure of the VGDL, and how components necessary to describe
video games are expressed.



Ebner, Levine, Lucas, Schaul, Thompson and Togelius 5

4 Language structure

Our discussion focused on the core components required in order to represent a simple video
game, this was separated into the following categories:

Map: Defines the 2D layout of the game, and also the initialization of structures as
obstacles or invisible entities such as end of screen boundaries and spawn points.
Objects: Objects that exist within the game. These can be different types of entities,
such as non-player characters (NPC), structures, collectibles, projectiles, etc.
Player Definitions: Determines the number of players, and which ones are human-
controlled.
Avatars: Player-controlled object(s) that exist on the map. When a player passes input
to the game, it will have an impact on the state of the avatar.
Physics: Definition of the movement/collision dynamics for all or some object classes.
Events: Control events sent from the player via input devices, timed or random events,
and object collision triggered events that affect the game.
Rules: Any event can be specified to lead to game-state changes like object destruction,
score changes, another event, etc. The rules also specify the game objectives, and
termination.

4.1 Map
The map of the game defines the (initial) two-dimensional layout, in particular the positioning
of the obstacles and the starting positions of the objects (including the avatar). Initially, we
see maps as string representations, that can be parsed directly into a game state by mapping
each ASCII character to an instance of the corresponding object class at its position.

4.2 Objects
The fundamental components of a game are the objects that exist in the 2D space. Every
object has a set of (x,y) coordinates, a bounding polygon (or radius), and is represented
visually on-screen. Objects are part of a hierarchy that is defined by the VGDL and permits
the inheritance of properties like physics, or collision effects with a minimal specification.
The player-controlled avatar is a specific type of object, and most games dynamics revolve
around the object interactions. A permanent static object, such as a wall, collectable (power
pills, health packs, coins etc.), portals or spawn/goal location is referred to as a ‘structure’.
These static objects will not require any update logic for each game tick. Meanwhile dynamic
objects, such as avatars, NPCs, elevators and projectiles will specify how they change state
on subsequent ticks of the game.

4.3 Physics
The temporal dynamics of non-static objects are called their ‘physics’, which include aspects
like gravitational pull, friction, repulsion forces, bouncing effects, stickiness, etc. Furthermore,
more active NPC behaviors like fleeing or chasing are included under this header as well.
Those dynamics operate on (specified or default) properties of the objects, like mass, inertia,
temperature, fuel, etc. The player control inputs affect the dynamics of the avatar object(s),
and those mappings to movement and behavior are encapsulated in the avatar class used
(e.g. spaceship, car, frog, pointer).



6 Video Game Description Language

4.4 Events
We recognise that in many games, there are instances of state-transition that are not the
result of an established agent committing actions. As such, we have identified the notion of
an event: a circumstance that at an undetermined point in time will result in change to one
or more objects on the next time step of the game.

To give a simple example, an NPC’s behaviour is defined by its own rationale. As such,
at any given time step, the action the NPC will commit is determined by pre-written code
that may factor elements from the environment as well as whether the current time step
bears any significance in-terms of the NPCs lifespan or any cyclical behaviour. Meanwhile, a
human player’s actions are not inferred from the entity itself. Rather, it is achieved by the
system polling the input devices that are recognised by the game software. In the event that
the input devices present a signal, we recognise this as an event, given that this signal will
appear at an indeterminable point in time.

We have recognised a range of circumstances we consider events, namely:

Signals from players via recognised input devices.
Object collisions (with each other, or with map boundaries).
Actions occur at specific points of time in the game (e.g. spawning).
Actions that will occur with a given probability.

For any game we wish to define, we must identify the range of events that can occur at
any point. As is seen later in Sections 6, we identify the list of events required for a handful
of games.

4.5 Rules
The game engine detects when the bounding boxes of two objects intersect and triggers a
collision event. Besides the default effect of ignoring the collision, common effects that could
occur include: bouncing off surfaces/objects, destruction of one or both objects, sticking
together, teleportation and the spawning of a new object. Outside of game entities, collisions
can also refer to the player leaving the ‘view’ of the game, as such we require rules for
recognising instances of scrolling, panning and zooming of the game view. Lastly, collisions
can also trigger non-local events, this can affect the current score, end a given level either as
a result of success or termination of the players avatar, move the game to the next level or
indeed end the game entirely.

5 Representing the language: Preliminary Syntax

We propose a preliminary syntax as close to human-readable as possible, in order to invite
game contributions from as broad an audience as possible, but definitely including game
designers and other non-programmers. Our proposed VGDL needs to suitably represent a
tree structure, which we propose to encode in Python-like white-space syntax. The other
syntax features are arrows (>) representing mappings, e.g. from tile characters to objects
names, from object names to object properties, or from collision pairs to their effects. Object
properties are assigned by terms combining property name, an ‘=’ symbol, and the value. We
require naming properties to make the code more readable and options ordering-independent.
Example: “Rectangle (height=3, width=12)”. Parentheses and commas can be added for
readability, but are ignored by the parser.



Ebner, Levine, Lucas, Schaul, Thompson and Togelius 7

6 Examples of classic games

The preceding sections discussed the purpose, structure and format of the VGDL that the
authors have devised. In this section we showcase examples that were conceived during
discussion. For this language to work in conjunction with the GVGP research, it is desirable
to suitably express the entities and mechanics of games that one would expect to find on the
Atari 2600. This section therefore focuses on three games reflective of that period: Space
Invaders, Lunar Lander and Frogger; chosen for their dissimilar mechanics and design. These
examples were selected for two purposes: to provide context to the design decisions we
made during discussion - thus providing definitions that reflect that we had envisaged - and
secondly as an attempt to identify potential complications that would need to be resolved.
What follows is our attempt to define the entities, physics, collision matrix and event table
that reflect the game as succinctly as possible.

6.1 Space Invaders

Space Invaders, originally released in 1978 in arcades and in 1980 for the Atari 2600, is one
of the most influential games in the industry both critically and commercially (14). The
mechanics of Space Invaders are relatively straightforward; the player must defend against
waves of enemy characters (the space invaders) who are slowly moving down the screen. The
enemies begin at the top of the screen and are organised into rows of a fixed size. The group
will collectively move in one direction along the x-axis until the outmost invader collides with
the edge of the screen, at which point the group moves down a set distance and alternates
their horizontal direction. While moving down the screen, enemies will at random open fire
and send missiles towards the bottom of the screen. These missiles either eliminate the player
upon contact, or can damage one of bunkers situated between the invaders and the player.
The player can hide behind these bunkers to strategically avoid being destroyed out by the
invaders. In addition to these invaders, a flying saucer can appear at random intervals which
traverses along the top of the screen, opening fire on the player below. To retaliate against
these threats, the player controls a cannon at the bottom of the screen which can be moved
left or right within the bounds of the game world. The player can fire missiles at the invaders
that will eliminate them upon contact. The player must eliminate all enemy invaders before
they reach the bottom of the screen in order to win. Figure 1 shows a screenshot from the
Space Invaders game. As previously described, we can see the player-controlled cannon at
the bottom of the screen as the waves of enemies move down in their grouped ‘typewriter’
formation.

Referring to the initial language structure in Section 4, we identify the core components
of Space Invaders as follows:

Map:An empty map save for the tiles that represent the bases the player uses for
cover. Locations are annotated for spawn points NPC waves, the human player and the
structures that present the boundary of the screen.
Objects: These are separated in ‘Fixed’ and ‘Moving’ objects. The former is indicative
of spawn points and the tiles that represent a base. Meanwhile, the latter denotes entities
such as NPCs and missiles. A hierarchy of these objects is shown in Figure 2.
Player Definition: At present we consider this a one-player game, with the controls
identified in Table 2.
Avatars: Player controls one sole avatar, the missle cannon.



8 Video Game Description Language

Figure 1 A screenshot of the Space Invaders game (14).

Figure 2 An object hierarchy of the entities found within the Space Invaders game. Note that
the Avatar, Player Missile and Saucer have been identified as singletons.

Physics: Each moving object in the game moves a fixed distance at each timestep.
There are no instances of physics being employed beyond the collisions between objects.

Events: The events of the game can be inferred both from the collision matrix in Table 1
and the event listings in Table 2.

Rules: Rules of the game, such as player scoring, the death of either enemy or player,
and winning the game can be inferred from the event table and collision matrix.

We feel that this information, which was gathered as part of our groups discussion, is
representative of the Space Invaders game. The object tree in Figure 2 identifies each type of
object which is used in the game. From this we can begin to dictate rules for collision as well
as assign events to these objects. Note that we have identified some objects as singletons,
given that only one of these objects at most should exist in the game world at any given
timestep. The collision matrix in Table 1, highlights the behaviour and events that are
triggered as a result of objects colliding within the game. Meanwhile the events shown in
Table 2 not only shows the actions that the user can have via the avatar, but circumstances
such as enemy saucers or missiles that are triggered by time or probability.



Ebner, Levine, Lucas, Schaul, Thompson and Togelius 9

Avatar Base Enemy
Missile

Player
Missile

Enemy End of Screen Saucer

Avatar life lost game over avatar stops

Base base

damaged;

missile

disappears

base

damaged;

missile

disappears

base tile

removed

Enemy
Missile

both

destroyed

missile destroyed

Player
Missile

destroys

enemy

missile destroyed saucer

destroyed

Enemy moves down, all

enemies change

dir.

End of
Screen

disappears

Saucer

Table 1 The Space Invaders collision matrix, identifying the behaviour of the game in the event
that two entities collide in the game.

Event Action
Joystick left Avatar left
Joystick right Avatar right
Joystick button Avatar fires missile
Time elapsed Saucer appears
Probability event Random enemy fires a missile

Table 2 The event listing for Space Invaders, showcasing not only instances which happen with
a certain probability or time, but also the relation of input devices to avatar control.



10 Video Game Description Language

Figure 3 A screenshot of Lunar Lander taken from (13) showing the player trying to land on
either of the highlighted platforms.

6.2 Lunar Lander
Lunar Lander is an arcade game released by Atari in 1979. This game was selected due
to its greater emphasis on precision when controlling the avatar, which proved popular at
the time of release (13). Control of the avatar is confounded by gravitational forces and
momentum gathered from movement, which is an element that we did not have to consider
in Space Invaders. As shown in Figure 3, the player is tasked with piloting the lunar module
towards one of the predefined landing platforms. Each platform carries a score multiplier
and given the rocky terrain of the moon surface, they are the only safe places to land the
module; landing the module in any location other than the pads results in death. The player
can rotate the lander within a 180 degree range such that the thrusters of the lander can
range from being perpendicular and parallel to the ground. The aft thruster must be used to
slow the descent of the lander given the gravitational forces bearing down upon it. However,
the player has two further considerations: the control must be applied proportionally to
provide adequate strength to the thrusters. Secondly, applying the thrusters will consume
the limited fuel supply. The player scores multiples of 50 points for a successful landing, with
the multiplier identified on the landing platform. Failed attempts also receive score based on
how smoothly the lander descended.

Once again we discussed how the game could be formulated within the proposed VGDL,
summarised as follows:

Map: The map file would identify the terrain of the world as structures, with unique
identifiers for landing platforms based on their score multipliers. The map will also
identify where the avatar will spawn in the game world at the beginning of a landing
(typically the top-left).
Objects: The object tree, shown in Figure 4 indicates the avatar itself, the ground being
separated into landing pad and the ‘rough’: i.e. all other parts of the terrain. One unique
object in this tree is the Scroll Frame. Having played Lunar Lander we recognised the
scroll frame’s view follows the lander should it move towards the left and right edges of
the screen. Furthermore, once the lander has descended to an altitude of approximately
500, the scroll frame zooms closer to the lander to allow for more precise control.



Ebner, Levine, Lucas, Schaul, Thompson and Togelius 11

Figure 4 An object hierarchy of the entities found in Lunar Lander, complete with reference to
the scroll pane used for viewing the game.

Lunar
Lander

Landing Pad Rough Close to
EOS

Lunar Lander IF upright and low

speed then win else

ship explodes

ship explodes scroll/wrap

Table 3 Lunar Lander collision matrix.

Player Definition: This a one-player game, with controls as shown in the event list in
Table 2.
Avatars: The lander module.
Physics: The game must model the gravitational force that exerts upon the lander,
and the continuous variables needed to calculate the thrust speed. We would intend for
the language’s multiple physics models to contain some that represent these phenomena.
These models will be parameterised to customise the model for the game.
Events: With exception of the player input, the only event shown in Table 2 is the
zooming of the scroll pane once the final descent altitude is reached.
Rules: Rules of the game, such as player scoring, the death of the player, and winning
the game can be inferred from the event table and collision matrix.

Again we have encapsulated the core game mechanics to be represented in the VGDL.
We believe these definitions can be expressed succinctly within the proposed language. One
component of the game that has not been explored as yet is the varying difficulties that
Lunar Lander offers to the player. There are four difficulty settings, Training, Cadet, Prime
and Command, differ in the strength of gravitational force applied, applying atmospheric
friction to the movement of the lander and in some cases added rotational momentum. This

Event Action
Joystick Left Rotate Left Stepwise
Joystick Right Rotate Right Stepwise
Joystick Up Increase Thrust
Joystick Down Decrease Thrust
Landing Altitude Reached Zoom Scroll Pane

Table 4 Lunar Lander events.



12 Video Game Description Language

Figure 5 A screen of the Frogger game from (12), with the frog avatar crossing the freeway with
only the river of logs and turtles keeping him from the lilypad goals at the top of the screen.

could be achieved given our intention to apply parameterised physics models as part of the
language.

6.3 Frogger

The last game covered in our initial discussions was Frogger, an arcade game developed by
Konami and published by Sega in 1981 (12). The game’s objective is to control a collection
of frogs one at a time through a hazardous environment and return to their homes. In
order to reach the goal, the player must navigate across multiple lanes of traffic moving at
varying speeds, followed by a fast flowing river full of hazards. While the first phase of the
trip relies on the player using any available space on the road whilst avoiding traffic, the
latter constrains the users movements to using floating logs and turtles - strangely, despite
being an amphibian entering the water proves fatal. What proved interesting to players at
release and subsequently to the discussion group is the range of hazards that the player must
overcome. Each ‘lane’ of hazards moves independently across the screen at its own speed.
Furthermore, some groups of floating turtles in the river would submerge after a set period
of time, meaning the player had to quickly move to another safe zone.

Below we highlight the key features of the game that we would implement in the VGDL:

Map: The map identifies where the initial location of the vehicles and logs. Furthermore,
it must assign the goal locations, the surrounding screen edge to prevent the player moving
off the level and the water hazards.
Objects: The object tree in Figure 6 indicates the range of fixed and moving objects
that exist in the game. While this tree looks similar to that shown in Figure 2, we create
a hierarchy for the floating platforms in the game, using the Log as the supertype. This is
of relevance to the collision matrix (Table 5), as we only define the event of colliding with
the supertype. This has been introduced as collisions with the subtypes are conditional
and driven by context. This issue would be addressed as a rule in the game.



Ebner, Levine, Lucas, Schaul, Thompson and Togelius 13

Figure 6 The proposed object hierarchy for the Frogger. Note the separation of fixed and mobile
objects used previously in Figure 2. Furthermore, the crocodile and turtle objects have been placed
under logs in the hierarchy given that they are also moving platforms for the frog. The difference is
they carry conditions that dictate whether the frog has safely landed upon them.

Player Definition: Frogger is a two-player game, however only one player is in control
of the frog at any given time. The controls for the player are shown in Table 6.
Avatars: The frog currently on screen.
Physics: Frogger does not adopt any physics models in the movement or behaviour of
any objects in game. The game is driven by the collisions between the frog and other
objects, be they hazard or otherwise.
Events: Table 6 shows that outside of player controls, we must consider the appearance
of a fly, which provides bonus score, and the creation of new moving vehicles or logs on
screen.
Rules: Outside of standard scoring and life counts, the rules must carry extra information
regarding the collisions that take place in game. While the collisions shown in Table 5
are similar to those shown previously, there are conditions on whether this results in
death for the player. Firstly, should the player land on a floating turtle, then it is safe
and as the collision matrix shows, the frog will stick to that surface. However should
the turtle be submerged then the frog collides with the water, resulting in death for the
player. Secondly, it is safe for a frog to collide with a crocodile provided it is not near its
mouth. In the event of landing on the mouth, the player dies. In addition, there are rules
that define how the player scores: should the frog reach the lily pad having landed on
either a fly or female frog, then the score earned has a bonus of 200 points.

The features defined are similar to that which we have seen in the previous two games,
but we addressed the unique elements of this game by defining rules for specific contexts,
whilst retaining a simplicity for the design. This issue of context-specific collisions is one
that must be addressed early on in the language. Games that we would wish to define in
the VGDL have collisions with enemies that are dependent upon state and/or location. For
example, in the game Mario Bros. the player will be killed should they collide directly with
a moving crab. Should the player land on the top of a ‘Koopa’ tortoise, then the enemy is
stunned; while side-on contact proves fatal. Given our efforts on Frogger we believe this will
not prove taxing when working in the formal language.



14 Video Game Description Language

Frog Vehicle Log Fly Goal Pad Water EOS
Frog dies sticks frog eats

fly

fills position,

new frog created

player dies blocks movement

Vehicle disappears/wraps

Log disappears/wraps

Fly disappears/wraps

Goal Pad
Water
EOS

Table 5 The Frogger collision matrix. Note we only consider collisions with a log type, as
collisions with the log subtypes are determined at runtime based on their current state.

Event Action
Joystick Left Jump Left
Joystick Right Jump Right
Joystick Up Jump Up
Joystick Down Jump Down
Probability Event Fly Appears
Probability Event Lady Frog Appears
Time Elapsed New Logs/Vehicles appear

Table 6 Frogger events.

7 Prototype and Roadmap

Upon reaching the end of our time in Dagstuhl we had reached a consensus on what we
expected of the Video Game Description Language. This of course is reflected by the concepts
and examples shown throughout Sections 3 to 6. At the time of writing, a working prototype
of the language has been developed in Python.1 The language incorporates many of the
considerations raised in Section 3 and is expressed in accordance with our expectations
set out in Section 4. The language is implemented atop Pygame: a collection of Python
modules that are designed to support creation of games.2 The language compiler can take
a user-defined game written in VGDL and construct a working pygame implementation.
While a work in progress, the prototype is already capable of constructing games that mimic
those discussed throughout our sessions. Figure 7 shows a working implementation of Space
Invaders that has been developed using the prototype.

Referring back to the core language components in Section 4 and how we envisaged
Space Invaders to be represented using this approach in Section 6.1, the game is currently
implemented as follows:

Map: The map is defined separate from the game logic and is shown in Figure 8. As
discussed in Section 6.1, we have represented the screen bounds, the avatar, base tiles

1 The source code is open-source (BSD licence), and the repository is located at https://github.com/
schaul/py-vgdl.

2 Pygame is freely available from http://www.pygame.org.

https://github.com/schaul/py-vgdl
https://github.com/schaul/py-vgdl
http://www.pygame.org


REFERENCES 15

and spawn points for the aliens. The map definition assigns specific symbols to each of
these objects, with the corresponding mapping in the game definition listing in Figure 7
(lines 11-13).
Objects: Game objects are defined in the SpriteSet section of Figure 7. Note that
upon defining the type of sprite and the class it adheres to, we introduce properties
that are relevant to that entity. A simple example is the base tiles which are identified
as immovable white objects. Meanwhile the aliens express the probability of fire, their
movement speed and the type of behaviour they will exhibit. Note keywords such as
‘Bomber and ‘Missile’ which are pre-defined types in the language. The indentation in the
language can be used to denote hierarchical object definitions, e.g. both sam and bomb
inherit the properties from missile, which allows statements like in line 22 that indicate
the collision effect of any subclass of missile with a base object. Also, the sam missiles
which are launched by the avatar are rightfully declared as singletons.
Player Definition & Avatars: The player is acknowledged in as the avatar (line 3).
Furthermore, it is classified as a FlakAvatar, a pre-defined type, that provides a working
implementation of the control scheme and movement constraints required for Space
Invaders play.
Events: The collision matrix shown in Table 1 has been implemented in the InteractionSet
within Figure 7. Note that in the majority of instances, the behaviour is to kill the sprites
that are involved in the collision. Naturally this would need to handle more complex
interactions in future games. Referring back to the event table shown in Table 2, the
player inputs have been modelled within the FlakAvatar type in the language, meanwhile
the probability that drives enemy fire has been declared as a property of the alien entity.
Rules: The TerminationSet defines the conditions for winning and losing the game. The
game states that having a zero avatars will result in failure. Meanwhile should the number
of aliens and unused spawn points reach zero, then the game will declare the player as a
winner.

While this is a work in progress, the prototype already provides playable implementations
of Space Invaders and Frogger, with definitions of games with continuous physics such as
Lunar Lander are in their early stages. It is our intent to continue developing this prototype
prior to developing the build that will operate in the GVGP framework. It is encouraging
that we have reached this stage within a relatively short period of time since our discussions
in Dagstuhl, and we will continue to expand the language until it satisfies our goals.

References

[1] C. Browne. Evolutionary game design. IEEE Transactions on Computational Intelligence
and AI in Games, pages 11–21, 2011.

[2] Casanova. Casanova project page. http://casanova.codeplex.com, 2012.
[3] Michael Cook and Simon Colton. Multi-faceted evolution of simple arcade games. In

Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG),
2011.

[4] Michael Genesereth and Nathaniel Love. General game playing: Overview of the aaai
competition. AI Magazine, 26:62–72, 2005.

[5] Vladimir Lifschitz. Answer set programming and plan generation. Artificial Intelligence,
138(1):39–54, 2002.

[6] Giuseppe Maggiore, Alvise Spanò, Renzo Orsini, Michele Bugliesi, Mohamed Abbadi,
and Enrico Steffinlongo. A formal specification for casanova, a language for computer

http://casanova.codeplex.com


16 REFERENCES

1 BasicGame
2 SpriteSet
3 avatar > FlakAvatar stype=sam
4 base > Immovable color=WHITE
5 missile > Missile
6 sam > orientation =UP color=BLUE singleton =True
7 bomb > orientation =DOWN color=RED speed =0.5
8 alien > Bomber stype=bomb prob =0.01 cooldown =3 speed =0.75
9 portal > SpawnPoint stype=alien delay =16 total =20

10 LevelMapping
11 0 > base
12 1 > avatar
13 2 > portal
14 TerminationSet
15 SpriteCounter stype= avatar limit =0 win=False
16 MultiSpriteCounter stype1 = portal stype2 =alien limit =0 win=True
17 InteractionSet
18 avatar EOS > stepBack
19 alien EOS > turnAround
20 missile EOS > killSprite
21 missile base > killSprite
22 base missile > killSprite
23 base alien > killSprite
24 avatar alien > killSprite
25 avatar bomb > killSprite
26 alien sam > killSprite

Figure 7 A definition of the Space Invaders game from a working prototype of the Video Game
Description Language. While a work in progress, this definition satsifies many of the considerations
from our discussions in Sections 4 and 6.1.

1 wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
2 w w
3 w2 w
4 w000 w
5 w000 w
6 w w
7 w w
8 w w
9 w w

10 w 000 000000 000 w
11 w 00000 00000000 00000 w
12 w 0 0 00 00 00000 w
13 w 1 w
14 wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

Figure 8 A representation of the Space Invaders environment. Each character represents either
the screen boundary, a component of a bunker base, the player and spawn points for the enemy
players. While the game map is constructed here, the relation to the game entities is defined in
the LevelMapping section of the game definition in Figure 7.



REFERENCES 17

games. In Proceedings of the 4th ACM SIGCHI symposium on Engineering interactive
computing systems, pages 287–292. ACM, 2012.

[7] T. Mahlmann, J. Togelius, and G. Yannakakis. Towards procedural strategy game genera-
tion: Evolving complementary unit types. Applications of Evolutionary Computation,
pages 93–102, 2011.

[8] Graham Nelson. The Inform Designer’s Manual. Placet Solutions, 2001.
[9] Adam M. Smith and Michael Mateas. Variations forever: Flexibly generating rulesets

from a sculptable design space of mini-games. In Proceedings of the IEEE Conference
on Computational Intelligence and Games (CIG), 2010.

[10] Julian Togelius and Jürgen Schmidhuber. An experiment in automatic game design.
In Proceedings of the IEEE Symposium on Computational Intelligence and Games
(CIG), 2008.

[11] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron Browne.
Search-based procedural content generation: a taxonomy and survey. IEEE Transac-
tions on Computational Intelligence and Games, 3:172–186, 2011.

[12] Wikipedia. Frogger. http://en.wikipedia.org/w/index.php?title=Frogger, 2012.
[13] Wikipedia. Lunar lander. http://en.wikipedia.org/w/index.php?title=Lunar_

lander_(arcade_game), 2012.
[14] Wikipedia. Space invaders. http://en.wikipedia.org/w/index.php?title=Space_

Invaders, 2012.

http://en.wikipedia.org/w/index.php?title=Frogger
http://en.wikipedia.org/w/index.php?title=Lunar_lander_(arcade_game)
http://en.wikipedia.org/w/index.php?title=Lunar_lander_(arcade_game)
http://en.wikipedia.org/w/index.php?title=Space_Invaders
http://en.wikipedia.org/w/index.php?title=Space_Invaders

	Motivation
	Previous work
	Criteria and considerations
	Language structure
	Map
	Objects
	Physics
	Events
	Rules

	Representing the language: Preliminary Syntax
	Examples of classic games
	Space Invaders
	Lunar Lander
	Frogger

	Prototype and Roadmap

