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Abstract— The principle of artificial curiosity directs active
exploration towards the most informative or most interesting
data. We show its usefulness for global black box optimization
when data point evaluations are expensive. Gaussian process
regression is used to model the fitness function based on all
available observations so far. For each candidate point this
model estimates expected fitness reduction, and yields a novel
closed-form expression of expected information gain. A new type
of Pareto-front algorithm continually pushes the boundary of
candidates not dominated by any other known data according
to both criteria, using multi-objective evolutionary search. This
makes the exploration-exploitation trade-off explicit, and permits
maximally informed data selection. We illustrate the robustness
of our approach in a number of experimental scenarios.

I. INTRODUCTION

Deciding where to explore next is a ubiquitous challenge
in reinforcement learning and optimization. Inspired by the
human drive to discover “interesting” parts of the world, one
formal interpretation of artificial curiosity [1], [2], [3] defines
momentary interestingness as the first derivative of the quality
of an adaptive world model, where quality is measured in
terms of how much the current model is able to compress
the data observed so far. Something is interesting if it contains
new, yet learnable regularities that can be used to better predict
or compress the data, taking into account the limitations of the
model’s learning algorithm.

Here we introduce a novel variant of this notion of arti-
ficial curiosity designed for optimization problems, such as
assembly-line optimization or helicopter design [4], where
function evaluations are very expensive. For these problems,
even a small reduction in the required number of evaluations
justifies a significant investment of computational resources.
Expensive global optimization is closely related to active
learning [5], in that candidate points to be evaluated must
be chosen with care, but the goal is different: active learning
is concerned with obtaining an accurate model of the data,
while in optimization modeling is secondary, and only useful
inasmuch as it facilitates locating optima more efficiently.
Therefore, active learning cannot be used naively for opti-

mization. Instead, the related response surface methods [6],
[7] are the standard tool for global optimization. They store
all available evaluations (some possibly given in advance)
and use them to model the cost function, which useful for
dimensionality reduction, visualization, assessing uncertainty,
and ultimately determining good points to explore [4], [8].
In addition, a statistical model of the cost function allows
expert knowledge to be incorporated in the form of a Bayesian
prior. Our variant of curiosity-driven exploration uses such a
memory-based model to estimate the interestingness of each
candidate point.

Unfortunately, the most informative points (in terms of
model improvement) do not necessarily promise maximal cost
reduction. We propose a novel way of handling this fundamen-
tal exploration-exploitation trade-off: to make informed data
selection decisions, they are postponed until the Pareto-optimal
front of candidate points with respect to both objectives is
known.

Section II-A provides a brief overview of artificial curiosity
and definitions of interestingness for various models. Sec-
tion II-B discusses the fundamental trade-off between explo-
ration and exploitation in optimization, and shows how data se-
lection after computing the Pareto-front of a set of candidates
allows for making more informed choices. Section III presents
a instantiation of curiosity-driven optimization framework
based on Gaussian processes, for which we derive a simple
analytical expression of information gain (interestingness).
Finally, section IV demonstrates the approach in a number
of scenarios, and section V discusses some shortcomings and
possible extensions.

II. CURIOSITY-DRIVEN OPTIMIZATION

Curiosity is the drive to actively explore the interesting
regions in search space that most improve the model’s pre-
dictions or explanations of what is going on in the world.
Originally introduced for reinforcement learning [1], [9], the
curiosity framework has been used for active learning [10],
[11], to explain certain patterns of human visual attention



better than previous approaches [12], and to explain concepts
such as beauty, attention and creativity [3], [13].

A. Formalizing Interestingness

The interestingness of a new observation is the difference
between the performance of an adaptive model on the ob-
servation history before and after including the new point.
The goal of the active data point selection mechanism is to
maximize expected cumulative future interestingness. Various
proposed distance measures include: the difference in data
compressibility before and after letting the learning algorithm
take the new data into account [13], [3], the difference in mean
squared prediction error on the observation history before and
after re-training with the new point [1], [2], and the Kullback-
Leibler (KL) divergence between belief distributions before
and after the new observation [9]. Note that interestingness is
observer-dependent and dynamic: a point that was interesting
early on can become boring over time.

To permit the incorporation of a Bayesian prior, we will
focus on probabilistic models and use a particular variant of
the KL-based approach [9] to maximize information gain [14],
[15], [16], [17], [18], [19]: The KL-divergence or relative
entropy between prior and posterior (before and after seeing
the new point) is invariant under any transformation of the
parameter space.

Formally, let Yenv be the environment of interest, and ypre
be our current knowledge1. The information gain (interesting-
ness) ψ (y|ypre) brought about by the observation y is defined
as

ψ (y|ypre) = D [p (Yenv|ypre; y) ||p (Yenv|ypre)]
=

∫
p (yenv|ypre; y)

log
p (yenv|ypre; y)
p (yenv|ypre) dyenv,

where D [·||·] denotes the KL-divergence. For a set of observa-
tions ypre, it is also useful to define the leave-one-out (LOO)
information gain for each observation ys w.r.t. the remaining
ypre\s as

ψLOO (ys) = ψ
(
ys|ypre\s

)
.

The information gain ψ (y|ypre) is defined a posteriori,
meaning that it is only defined after we see the value y.
However, in most cases, we want to assess the information
gain of an observation a priori, i.e., before seeing the value.
This leads to the expected information gain of random variable
Y , defined by

Ψ(Y |ypre) = E [ψ (Y |ypre)]
=

∫
p (y|ypre)

∫
p (yenv|ypre; y)

log
p (yenv|ypre; y)
p (yenv|ypre) dyenvdy

= I (Y ;Yenv|ypre) ,
1We use upper case letters for random variables, and the corresponding

lower case letters for specific configurations.

which turns out to be the conditional mutual information
between the observation and the environment.

B. Exploration-Exploitation trade-off

The previous section introduced maximal expected infor-
mation gain as a possible objective for exploration. The
straightforward choice of objective for exploitation would be
to minimize the expected cost. However, in optimization, there
is an asymmetry in utility: solutions that are better than the
best currently found fmin largely outweigh those that are
almost as good. Thus exploitation really aims at maximizing
the expected improvement in cost with respect to fmin. It
can be shown [6] that the expected improvement takes the
following form:

Δ(x) = σ (Y |yo) (sΦ (s) + φ (s)) ,

where

s =
fmin − E [Y |yo]

σ (Y |yo) ,

while Φ (·) and φ (·) are the cumulative distribution and
density functions of Gaussian distributions, respectively.

Optimizing conflicting objectives necessarily involves some
form of trade-off, which is typically handled by using a
weighted sum of both objectives, where the weights are set
manually, or tuned to the problem. Combining two objectives
of different scale into a single utility measure is common prac-
tice [19], but problematic [20]. In fact, if the cost landscape
is ill-shaped each objective can completely dominate in some
regions while being dominated in others.

Therefore we propose turning the problem around and only
deciding on the trade-off after first evaluating both objectives
for a large set of candidate points. This means finding the
Pareto-front of candidates that are non-dominated w.r.t. ex-
pected improvement and expected information gain, which
can be performed by any multi-objective optimization method,
for example the Non-dominated Sorting Genetic Algorithm
version II (NSGA-II; [21]) which is used in the experiments
in section IV.

All non-dominated candidates are considered “good” solu-
tions, and therefore each should be assigned a probability of
being chosen that favors those that stand out on the Pareto-
front in terms of combining both objectives. Ideally, this
probability should be insensitive to quirks of the algorithm that
builds the front (i.e. varying candidate densities), and to any
smooth order-preserving transformation of the cost function.
In addition, we can shift the focus from one objective to the
other, e.g. exploitation becoming more important over time.

In the absence of an optimal way of handling this decision,
we opt for the simplest solution, which consists of choosing
the next point at random from the Pareto-front.

C. Algorithm

Algorithm 1 combines the components described in the
previous section into a general framework for curiosity-driven
optimization. In each iteration it first fits a probabilistic model
Mcost to all known pointsX , and then usesMcost to determine



Algorithm 1 Curiosity-driven Optimization
1: Given cost function f , models Mcost and Mint, initial

points X .
2: repeat
3: Fit Mcost to X .
4: for all s in X do
5: ψLOO(s) = D[Mcost(X)||Mcost(X−s)]
6: end for
7: Fit Mint to ψLOO.
8: Find a set C of non-dominated candidate points,
9: maximizing information gain (estimated by Mint)

and
10: minimizing cost (estimated by Mcost)
11: Choose x∗ from C.
12: X ← X ∪ {(x∗, f(x∗)}
13: until stopping criterion is met.

the LOO-information gain at each point. This interestingness
function is then approximated using a second model, Mint.
The Pareto-front of the candidate points is then computed
using a multi-objective optimization algorithm, each model
providing an estimate for one of the two objectives. Finally, a
new point x∗ is chosen, as described in section II-B.

The class of probabilistic models used for Mcost and Mint

should be general and flexible enough to fit multi-modal and
highly non-linear cost functions. Ideally, for every unknown
point, such a model should be able to (efficiently) predict the
expected value, the expected uncertainty associated with that
prediction, and provide an analytical expression for computing
information gain.

One option would be to use a mixture of Gaussians on the
joint parameter-cost function space (as in [22]). However, this
approach has the drawback of being sensitive to the number of
Gaussians used, as well as giving poor interpolation in regions
with few sampled points.

III. CURIOSITY-DRIVEN OPTIMIZATION WITH GAUSSIAN

PROCESSES

In this section we present an implementation of curiosity-
driven optimization which satisfies all our criteria from the
previous section by using Gaussian processes to model the
cost function.

A. Gaussian Processes

Gaussian processes (GP, [23]) can be seen as a probability
distribution over functions, as evaluated on an arbitrary but
finite number of points. Given a number of observations, a
Gaussian process associates a Gaussian probability distribution
to the function value for each point in the input space.
Gaussian processes are capable of modeling highly complex
cost landscapes through the use of appropriate covariance
(kernel) functions, and are commonly used for regression and
function modeling [23], [24].

Formally, we consider the Gaussian process with zero mean
and the kernel function

k (x, x′) + σ2
nδ (x, x

′) ,

where δ (·, ·) is the Kronecker delta function. Thus, for any
values y, y′ at x, x′, E [yy′] = k (x, x′) + σ2

n. We make the
assumption that the function k is smooth and local in the sense
that k (x, x′)→ 0 when |x− x′| goes to infinity.

B. Gaussian Process information gain

The concept of information gain can easily be mapped onto
Gaussian processes, but previous work has failed to provide a
closed form expression for efficiently computing it for each
candidate point [5]. Let us consider a collection of fixed
reference points xr , and view their value Yr as the environment
of interest. Our prior knowledge ypre consists of all previously
evaluated points xo with value yo. The expected information
gain of the value Y at point x is thus defined by

Ψr (x|yo) = I (Yr;Y |yo)
= H (Y |yo)−H (Y |Yr, yo) ,

where H(·|·) is the conditional entropy. A major disadvantage
of this definition is that the expected information gain depends
on the reference points xr. However, we may consider the
situation where the number of reference points goes to infinity.
By definition, p (Y |Yr, yo) is a Gaussian distribution, and

H (Y |Yr, yo) = 1

2
log 2πeσ2 (Y |Yr, yo) .

Here σ2 (Y |Yr, yo) is the predictive variance at x given by

σ2 (Y |Yr, yo) = σ2
n + k (x, x) − k (x, xro)(

k (xro, xro) + σ2
nId

)−1
k (xro, x)

= σ2
n + σ2

e .

with xro = [xr, xo] and Id being the identity matrix. We
take advantage of the fact that in GP, the predictive variance
depends only on the location of observations. In particular, σ2

e

is the variance of the predicted mean ȳ = E [Y ], and

0 ≤ σ2
e = σ2 (ȳ|Yr, yo) ≤ σ2 (ȳ|Yr) = σ2

s ,

because conditioning always reduces variance for Gaussian
distributions. According to [23], σ2

s converges to 0 when the
number of reference points xr around x goes to infinity. This
indicates that σ2

e converges to 0 uniformly w.r.t. yo, thus
σ2 (Y |Yr, yo) converges to σ2

n uniformly w.r.t. yo.
When the number of observation points is sufficiently large

around any given point x, we have

Ψr (x|yo) = H (Y |yo)−H (Y |Yr, yo)
→ 1

2
log 2πeσ2 (Y |yo)− 1

2
log 2πeσ2

n

=
1

2
log σ2 (Y |yo)− 1

2
log σ2

n.



Algorithm 2 Curiosity-driven optimization with Gaussian
Processes (CO-GP)

1: Given cost function f , kernel function, initial points X .
2: repeat
3: Fit a Gaussian process G to X .
4: Find a set C of non-dominated candidate points x

maximizing ΨG(x) and ΔG(x).
5: Choose x∗ from C.
6: X ← X ∪ {(x∗, f(x∗)}
7: Optionally optimize the kernel hyperparameters w.r.t.

the marginal likelihood.
8: until stopping criterion is met.

The limit no longer depends on the reference points, thus
it can be used as an ‘objective’ measure for the expected
information gain at point x:

Ψ(x|yo) = 1

2
log σ2 (Y |yo)− 1

2
log σ2

n.

The second term is constant, therefore there is a direct connec-
tion between the expected information gain and the predictive
variance given the observation, which can be computed effi-
ciently. Note that Seo et al. [25] found the predictive variance
to be a useful criterion for exploration, without realizing that
it is equivalent to information gain.

C. Algorithm

Choosing a Gaussian process to model the cost function
significantly simplifies the general algorithm introduced in
Section II-C. First, it allows us to compute the expected
information gain Ψ instead of the less robust LOO-information
gain. Second, the model Mint is no longer necessary, as Ψ
can be computed for unknown points as well. The resulting
algorithm (CO-GP) is shown in Algorithm 2. The remainder
of this section discusses some practical considerations.

The computational complexity of each iteration of CO-
GP is dominated by one matrix inversion of O(n3), where
n is the total number of evaluations. Building the Pareto-
front consumes most of the computation time early on, but
scales with O(n2). The computational complexity of Gaussian
processes can be reduced e.g. by implementing them online
and using a reduced base vector set, containing only the most
informative points [26]. We have not implemented these yet, as
computation time was not a major concern in our experiments.

Gaussian process regression only gives reasonable results
when the kernel hyperparameters are set properly. With enough
computation time available, we can periodically optimize
the hyperparameters with respect to the marginal likelihood.
For this we use the natural evolution strategies algorithm
(NES, [27], [28]). Potentially, we could also employ diagnostic
methods [8] to determine whether the model is appropriate.

At each iteration, an inner multi-objective optimization
algorithm is used, in our case, NSGA-II [21]. The implemen-
tations of this and NES (above) are taken from the PyBrain
machine learning library [29]. We can make use of our

Fig. 1. Performance in linear regions. The plot shows the performance of
CO-GP on a linear surface (averaged over 20 independent runs), in terms of
the distance from the best point found so far to the initial point. The green
(solid) and blue (dashed) curves correspond to CO-GP with hyperparameter
adaptation enabled and disabled, respectively. We observe that the distance
from the initial point (and thus the decrease in cost) grows exponentially if
the hyperparameters are adapted, but only linearly otherwise.
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Fig. 2. Precisely locating optima. The plot shows the performance of CO-
GP on a unimodal, quadratic surface (averaged over 20 independent runs), in
terms of the distance from the optimum to the best point found so far. This
distance decreases exponentially with the number of points.

available information to make this step more efficient. For
example, we initialize the search with the Pareto-front found
in the previous iteration. Furthermore, as we want the search
to roughly cover the range of known points, we adjust the
scale (for step-sizes) accordingly.

IV. EXPERIMENTS

To demonstrate the practical viability of CO-GP, we first in-
vestigate how it handles a number of common but problematic
scenarios and then test it on a couple of standard benchmarks
functions. Following [23], all experiments use the common



Gaussian kernel (also known as radial basis function) with
noise, which is a very robust choice in practice.

A. Long slopes

Many cost function landscapes contain large linear regions.
Specifically, if the scale of the region covered by the initial
points is too small, almost any landscape will appear linear.
An ideal algorithm should be able to exploit the linearity of
such regions. In particular, it is highly desirable to have the
searched region grow exponentially with the number of points.
Note that many well-known algorithms, such as Estimation
of Distribution Algorithms, do not have this property, and
instead rely either on correct initialization or heuristics [30].
In contrast, CO-GP does have this property, as our results on
the linear function show (see Figure 1).

B. Local optimization

While designed primarily for multi-modal cost landscapes,
we investigated how our approach handles simple cost land-
scapes with a single optimum. The success criterion for
this case is to have the distance to the optimum decrease
exponentially with the number of points. While we cannot
prove that this is the case in general, Figure 2 shows that it
holds for the multi-dimensional sphere function. This indicates
that CO-GP can locate optima up to a high precision, at least
whenever, locally, the cost function is approximately quadratic.

C. Global optimization

Every global optimization algorithm should provide a guar-
antee that in the limit its chosen points will cover the search
space densely, which is the only way to ensure that it will
eventually find the global optimum. Optimization based on ex-
pected improvement has been shown to have this property [31].
It turns out that if we remove the information gain objective
from CO-GP, the algorithms are equivalent. Therefore, as one
extreme of the Pareto-front will always correspond to the point
maximizing expected improvement exclusively, and that point
has a non-zero probability of being chosen, CO-GP inherits
the property that it always finds the global optimum in the
limit.

D. Branin benchmark

The Branin function [6], [8] is a commonly used benchmark
for global optimization of the form:

f(x1, x2) = a(x2 − bx21 + cx1 − d)2
+e(1− f) cos(x1) + e,

where the standard parameter settings are a = 1, b = 5
4π2 ,

c = 5
π , d = 6, e = 10, f = 1

8π . The function has three global
minima (at (−π, 12.275), (π, 2.275) and (9.42478, 2.475)
with value f(x∗) = 0.397887), a bounded domain and a non-
trivial structure. Figure 3 illustrates the behavior of CO-GP on
the Branin function over the course of a single run, starting
with four points on the boundary corners. The Gaussian
process model produces a good fit of the true function after
about 30 iterations. Locating one optimum (up to a precision

of 0.1) requires only 28 ± 8 evaluations, locating all three
requires 119±31. The qualitative behavior of the algorithm is
very intuitive, placing part of its search points spaced broadly
within the domain, while the other part forms clusters of points
ever closer around the optima. Although this experiment is
intended as a proof of concept, not an empirical comparison
to other global optimization algorithms, the quantitative results
indicate that CO-GP is on par with the best results reported
in the literature [6].

V. DISCUSSION

The results in section IV demonstrate that curiosity-driven
optimization properly handles a number of typical optimiza-
tion challenges. Although based on the general and theoret-
ically powerful principle of artificial curiosity, our current
implementation exhibits certain weaknesses.

In particular, despite the derived closed-form expressions
for the objectives, the method’s computational cost is still
high, limiting the application domain to (relatively) costly
optimization problems. On the other hand, many real-world
problems (e.g., helicopter design [4]) are precisely of this type.
Nevertheless, in future research we would like to extend the
method such that one can specify the amount of acceptable
computational effort for the selection of each data point, and
have the algorithm make the best choice under this constraint.

Another drawback of our approach is that it is greedier
than the original curiosity framework: it does not necessarily
maximize cumulative future expected information gain, but
greedily selects the next data point that is expected to be the
immediately most interesting. More sophisticated reinforce-
ment learning algorithms will be necessary to maximize the
expected sum of future intrinsic rewards (each reward being
proportional to the information gain of the corresponding
observed data).

Unless the issue of having to choose an appropriate kernel is
ignored, the method is not completely parameter-free (a prob-
lem shared by all kernel-based methods). However, this may
also be seen as an asset, allowing for the elegant integration
of expert knowledge.

The results bode well for applying the general template
(Algorithm 1) to related domains such as constrained or dis-
crete optimization, or even mixed-integer programming. One
application domain where we expect curiosity-based methods
to be counter-productive, however, are problems that require
minimizing cumulative evaluated regret, because those tend
to require risk-averse exploration (which in practice generally
translates to careful local search): here curiosity may kill the
cat.

VI. CONCLUSION

This paper introduced a novel exploration principle for
costly optimization problems derived from the principle of
artificial curiosity. Using Gaussian processes as a model, we
derived a closed-form expression for expected information
gain. Pursuing expected cost reduction as a second objec-
tive, our algorithm builds a Pareto-front of non-dominated
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Fig. 3. Optimization on the Branin function. The plot in the top right corner shows a contour plot of the Branin function with the three global optima marked
with triangles. The left column shows the estimated cost function model (top), and the two competing objectives, expected information gain (middle) and
expected improvement (bottom), in an early phase after 10 points (blue squares) have been observed. The red circles are the points on the Pareto-front being
considered for the next choice. The middle column shows the same information after 30 iterations. Note that in this later stage the model is very close to the
true function. The plot in the middle of the right column shows the shape of the Pareto-front corresponding to the situation in the left column, and the plot
on the bottom right shows the values of the cost function at the chosen points (the initial 4 corner points are not shown). In the early phase, the Pareto-front
contains a continuum of points in the center that trade off improvement and information gain, plus a few isolated points with high information gain, but very
low expected improvement. After 30 iterations, two of the global optima have been located precisely. The expected improvement is zero everywhere, so the
Pareto-front is collapsed to the single point with highest information gain. CO-GP now performs a purely exploratory step, and will continue to do so until it
leads to non-zero expected improvement (e.g. around the third optimum). On average, CO-GP requires about 120 points to locate all three optima with high
accuracy.



candidate data points, and thus can handle the exploration-
exploitation trade-off in hindsight. Experiments demonstrate
that curiosity-driven optimization with Gaussian processes is
robust and promising, opening up an exciting new direction
of optimization research.
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