Universal Value Function Approximators

Tom Schaul, Dan Horgan, Karol Gregor, Dave Silver
Motivation

Forecasts about the environment

- = temporally abstract predictions (questions)
- not necessarily related to reward (unsupervised)
- conditioned on a behavior
- (aka GVF, nexting)
- **many** of them

Why?

- better, richer representations (features)
- decomposition, modularity
- temporally abstract planning, long horizons
Example forecasts

• **Hitting the wall**
 • if the agent aims for the nearest wall
 • if the agent goes for the door

• **Remaining time on battery**
 • if the agent stands still
 • if the agent keeps moving

• **Luminosity increase**
 • if the agent presses the light switch
 • if the agent waits for sunrise
Concretely, for this work:

Subgoal forecasts

- Reaching any of a set of states, then
 - the episode terminates ($\gamma = 0$)
 - and a pseudo-reward of 1 is given
- Various time-horizons induced by γ
- Q-values are for the optimal policy that tries to reach the subgoal (alignment)

Neural networks as function approximators
Combinatorial numbers of subgoals

Why?
• because the environment admits tons of predictions
• any of them could be useful for the task

How?
• efficiency
 • sub-linear cost in the number of subgoals
• exploit shared structure in value space
• generalize to similar subgoals
Outline

• Motivation
 • learn values for forecasts
 • efficiently for many subgoals

• Approach
 • new architecture
 • one neat trick

• Results
Universal Value Function Approximator

- a single neural network producing $Q(s, a; g)$
 - for many subgoals g
 - generalize between subgoals
 - compact

- UVFA ("you-fah")
UVFA architectures

- Vanilla (monolithic)
- Two-stream
 - separate embeddings ϕ and ψ for states and subgoals
 - Q-values = dot-product of embeddings
 - (works better)
UVFA learning

- Method 1: bootstrapping
 \[
 Q(s_t, a_t, g) \leftarrow \alpha \left(r_g + \gamma_g \max_{a'} Q(s_{t+1}, a', g) \right) \\
 + (1 - \alpha) Q(s_t, a_t, g)
 \]
 - some stability issues

- Method 2:
 - built training set of subgoal values
 - train with supervised objective
 - like neuro-fitted Q-learning
 - (works better)
Outline

• Motivation
 • learn values for forecasts
 • efficiently for many subgoals

• Approach
 • new architecture: UVFA
 • one neat trick

• Results
Trick for supervised UVFA learning: FLE

Stage 1: **Factorize**
Stage 2: **Learn Embeddings**
Stage 1: Factorize (low-rank)

- target embeddings for states and goals
Stage 2: Learn Embeddings

- regression from state/subgoal features to target embeddings

(optional Stage 3): end-to-end fine-tuning
FLE vs end-to-end regression

- between 10x and 100x faster
Outline

• Motivation
 • learn values for forecasts
 • efficiently for many subgoals

• Approach
 • new architecture: UVFA
 • one neat trick: FLE

• Results
Results: Low-rank is enough
Results: Low-rank embeddings
Results: Generalizing to new subgoals
Results: Extrapolation

even to subgoals in unseen fourth room:
Results: Transfer to new subgoals

Refining UVFA is much faster than learning from scratch
Results: Pacman pellet subgoals

training set

test set
Results: pellet subgoal values (test set)

“truth”

UVFA generalization
Summary

- **UVFA**
 - compactly represent values for many subgoals
 - generalization, even extrapolation
 - transfer learning
- **FLE**
 - a trick for efficiently training UVFAs
 - side-effect: interesting embedding spaces
 - scales to complex domains (Pacman from raw vision)

Details: see our paper at ICML 2015