
Technische Universität München

Lehrstuhl VI: Echtzeitsysteme und Robotik

Studies in Continuous
Black-box Optimization

Tom Schaul

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. B. Brügge, Ph.D

Prüfer der Dissertation: 1. Univ.-Prof. Dr. H.-J. Bungartz

2. Univ.-Prof. Dr. H. J. Schmidhuber

Die Dissertation wurde am 06.06.2011 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 28.06.2011 angenommen.

ii

Abstract

O
ptimization is the research field that studies that studies the design of

algorithms for finding the best solutions to problems we humans throw

at them. While the whole domain is of important practical utility, the present

thesis will focus on the subfield of continuous black-box optimization, presenting

a collection of novel, state-of-the-art algorithms for solving problems in that

class.

First, we introduce a general-purpose algorithm called Natural Evolution

Strategies (NES). In contrast to typical evolutionary algorithms which search

in the vicinity of the fittest individuals in a population, evolution strategies

aim at repeating the type of mutations that led to those individuals. We can

characterize those mutations by a search distribution. The key idea of NES is

to ascend the gradient on the parameters of that distribution towards higher

expected fitness. We show how plain gradient ascent is destined to fail, and

provide a viable alternative that instead descends along the natural gradient

to adapt the search distribution, which appropriately normalizes the update

step with respect to its uncertainty. Being derived from first principles, the

NES approach can be extended to all types of search distributions that allow a

parametric form, not just the classical multivariate Gaussian one. We derive a

number of NES variants for different distributions, and show how they are useful

on different problem classes. In addition, we rein in the computational cost,

avoiding costly matrix inversions through an incremental change of coordinates.

Two additional, novel techniques, importance mixing and adaptation sampling,

allow us to automatically tune the learning rate and batch size to the problem,

and thereby further reduce the average number of required fitness evaluations.

A third technique, restart strategies, provides the algorithm with additional

robustness in the presence of multiple local optima, or noise.

Second, we introduce a new approach to costly black-box optimization, when

fitness evaluations are very expensive. Here, we model the fitness function using

state-of-the-art Gaussian process regression, and use the principle of artificial

curiosity to direct exploration towards the most informative next evaluation

candidate. Both the expected fitness improvement and the expected information

gain can be derived explicitly from the Gaussian process model, and our method

constructs a front of Pareto-optimal points according to these two criteria. This

iii

makes the exploration-exploitation trade-off explicit, and permits maximally

informed candidate selection.

We empirically validate our algorithms on a broad set of benchmarks. We

also include a study of how continuous black-box optimization can solve chal-

lenging neuro-evolution problems, where multi-dimensional recurrent neural net-

works are trained to play the game of Go. At the same time, we establish to

what degree those network architectures can transfer good playing behavior

from small to large board sizes.

In summary, this dissertation presents a collection of novel algorithms, for

the general problem of continuous black-box optimization as well as a number

of special cases, each validated empirically.

iv

Dedicated to

Joé Schaul

In memory of

Adina Mosincat

v

vi

Table of Contents

Abstract . iii

Table of Contents . vii

List of Tables . xi

List of Figures . xiii

List of Algorithms . xv

Preface . xvii

0.1 Thesis Outline . xvii

0.2 Related Publications . xviii

0.3 Notation . xxi

Acknowledgments . xxiii

1 Introduction: Continuous Black-box Optimization 1

1.1 Problem Definition . 1

1.1.1 Continuous Optimization: Real-valued Solution Space . . 2

1.1.2 Black-box Optimization: Unknown Function 2

1.1.3 Local Optimization: Find a Nearby Optimum 3

1.1.4 Noisy Optimization: Functions Corrupted by Noise 3

1.1.5 Multi-objective Optimization 4

1.2 Evaluating Optimization Algorithms 5

1.3 State-of-the-Art Approaches . 6

1.3.1 Evolutionary Methods . 6

1.3.2 Response Surface Methods 7

1.4 Impact and Applications . 8

1.5 Related Problem Domains . 8

1.6 Open Questions . 9

2 Natural Evolution Strategies 11

2.1 The NES Family . 11

2.1.1 Chapter Outline . 12

2.2 Search Gradients . 13

vii

2.2.1 Search Gradients for Gaussian Distributions 14

2.2.2 Limitations of Plain Search Gradients 15

2.3 Using the Natural Gradient . 16

2.4 Performance and Robustness Techniques 19

2.4.1 Fitness Shaping . 20

2.4.2 Fitness Baselines . 20

2.4.3 Importance Mixing . 22

2.4.4 Adaptation Sampling . 24

2.4.5 Restart Strategies . 25

2.5 Techniques for Multinormal Distributions 28

2.5.1 Using Exponential Parameterization 28

2.5.2 Using Natural Coordinates 29

2.5.3 Orthogonal Decomposition of Multinormal Parameter Space 31

2.5.4 Connection to CMA-ES 32

2.5.5 Elitism . 35

Use for Multi-objective NES 37

2.6 Beyond Multinormal Distributions 38

2.6.1 Separable NES . 38

2.6.2 Rotationally-symmetric Distributions 40

Sampling from Radial Distributions 41

Computing the Fisher Information Matrix 41

2.6.3 Heavy-tailed NES . 42

Groups of Invariances . 43

Cauchy Distribution . 44

2.7 Experiments . 45

2.7.1 Experimental Setup and Hyperparameters 46

2.7.2 Black-box Optimization Benchmarks 47

2.7.3 Separable NES . 48

Separable and Non-separable Benchmarks 48

Neuro-evolution . 53

Lennard-Jones Potentials 54

2.7.4 Heavy Tails and Global Optimization 56

2.7.5 Results Summary . 57

2.8 Discussion . 58

3 Curiosity-driven Optimization 61

3.1 Artificial Curiosity . 61

3.1.1 Background . 62

3.1.2 Artificial Curiosity as a Guide for Optimization 62

3.1.3 Formal Framework . 63

3.2 Exploration/Exploitation Trade-off. 63

3.3 Curiosity-driven Optimization (General Form) 65

3.4 Models of Expected Fitness and Information Gain 65

viii

3.4.1 A Good Model Choice: Gaussian Processes 66

3.4.2 Derivation of Gaussian Process Information Gain 66

3.5 Curiosity-driven Optimization with Gaussian Processes 67

3.6 Minimal Asymptotic Requirements 68

3.6.1 Reaching Optima at Arbitrary Distance 68

3.6.2 Locating Optima with Arbitrary Precision 69

3.6.3 Guaranteed to Find Global Optimum 69

3.7 Proof-of-concept . 70

3.8 Discussion . 71

4 A Study in Scalability . 73

4.1 Scalability in Problem Size . 73

4.2 Example Domain: the Game of Go 74

4.2.1 Rules of the Game . 74

4.2.2 Challenges of Go . 74

4.2.3 Simpler Variants of Go . 75

4.2.4 Computer Opponents . 76

4.3 Scalable Neural Architectures . 76

4.3.1 Multi-dimensional RNN 77

4.3.2 Multi-dimensional LSTM 78

4.3.3 A Custom Architecture for Go 78

4.4 Experiments . 79

4.4.1 Experimental Setup . 79

4.4.2 Random-weight Networks 80

4.4.3 Optimized Networks . 82

4.4.4 Coevolved Networks . 84

4.5 Discussion . 90

5 Conclusions . 91

5.1 Perspectives . 92

5.2 Closing Words . 93

A Appendix: Implementations in Python 95

B Appendix: Weighted Mann-Whitney Test 97

Bibliography . 99

Index . 109

ix

x

List of Tables

1 Notation and symbols used. xxi

2.1 Default parameters . 46

2.2 Summary of enhancing techniques 59

4.1 Fitness correlations across board sizes (random networks) 80

4.2 Fitness correlations across board sizes (optimized networks) . . . 84

4.3 Dominance numbers found during coevolution 87

A.1 Implementations in PyBrain . 96

xi

xii

List of Figures

1.1 Illustration of local and global optima 4

2.1 Lack of scale invariance . 17

2.2 Illustration of plain vs. natural gradient 18

2.3 Illustration of importance mixing 23

2.4 Illustration of adaptation sampling 26

2.5 Illustration of restart strategies 27

2.6 Illustration of exponential map 29

2.7 Computation time per function evaluation 47

2.8 Unimodal benchmarks . 49

2.9 Multi-modal benchmarks . 50

2.10 Noisy benchmarks . 51

2.11 Noisy benchmarks (continued) 52

2.12 SNES vs. xNES . 53

2.13 Non-Markovian double-pole balancing 54

2.14 Lennard-Jones clusters . 55

2.15 Lennard-Jones benchmark results 55

2.16 Double-funnel benchmark . 57

2.17 Deceptive global optima . 58

3.1 Escaping linear regions . 69

3.2 Precisely locating optima . 70

3.3 Global optimization on the Branin function 72

4.1 MDRNN structure diagram . 77

4.2 Random-weight networks across different tasks 81

4.3 Random-weight networks across different architectures 82

4.4 Learning curves for different games (naive opponent) 83

4.5 Learning curves for training against different opponent strengths 85

4.6 Illustrations of fitness scalability on Atari-Go 86

4.7 Typical coevolutionary run . 88

4.8 CIAO plot: champions of both populations 89

4.9 Illustrative games of coevolution champions 90

xiii

xiv

List of Algorithms

1 Canonical Search Gradient algorithm 14

2 Search Gradient algorithm: Multinormal distribution 15

3 Canonical Natural Evolution Strategies (NES) 19

4 Natural Evolution Strategies with baselines 22

5 Exponential Natural Evolution Strategies (xNES) 33

6 (1+1)-NES: radial Gaussian distribution 37

7 (1+1)-xNES: multi-variate Gaussian distribution 37

8 Separable NES (SNES) . 40

9 (1+1)-NES with multi-variate Cauchy distribution 45

10 Curiosity-driven Optimization . 65

11 Curiosity-driven Optimization with Gaussian processes (CO-GP) . 68

xv

xvi

Preface

R
esearch does not always proceed in a straight line, and my case is no ex-

ception. Driven by curiosity and with an enthusiasm triggered by different

colleagues, I ended up working on a whole range of research topics. The result

is a thesis which covers only a selection of this work, and is not completely ho-

mogeneous: Although all pertaining to continuous black-box optimization, the

three core chapters are relatively self-contained, with only minimal overlap.

0.1 Thesis Outline

Chapter 1 introduces the field of continuous black-box optimization, illustrates

its broad usefulness in a whole range of application domains and describes the

major state-of-the-art approaches. It proceeds to carve out the open questions

that in turn motivate the remainder of the dissertation.

Chapter 2 is the most substantial chapter (outlined in detail in section 2.1.1).

It presents a novel family of black-box optimization algorithms, Natural Evolu-

tion Strategies (NES), that are very flexible, and derived from first principles.

We present a number of concrete instantiations, each of these algorithms being

appropriate for a different class of optimization problems. The chapter also con-

tains a collection of techniques to reduce computational and sample complexity,

as well as increase robustness.

Chapter 3 presents the principle of artificial curiosity and investigates how

it can be employed to guide exploration, especially in the context of black-box

optimization problems with high cost per function evaluation. The resulting al-

gorithm relies on Gaussian process regression to determine the most informative

points to explore.

Chapter 4 looks at an application of black-box optimization to the challeng-

ing problem of learning to play the game of Go, using a specialized recurrent

neural networks architecture, which turns out to be highly scalable.

Chapter 5 concludes the dissertation, revisiting the open questions from

section 1.6, and laying out a number of possible extensions and ideas for future

work.

xvii

0.2 Related Publications

Most parts of this dissertation have already appeared as peer-reviewed articles.

This section details for each chapter the publications it is based upon, including

partially reused text, derivations, results and figures. As should be clear from

the many different co-authors, the published work was not done solely by me.

However, my contributions to each article were substantial, and in this disserta-

tion, I empathized and expanded upon those elements of which I was the main

contributor. Also, I conducted and analyzed all of the experiments presented

here, and implemented the corresponding algorithms and benchmarks.

0.2.1 Incorporated in Chapter 2

The original work on Natural Evolution Strategies was done jointly with Daan

Wierstra in 2007, and we then developed the consecutive improvements and

extensions with significant help of two more collaborators, Sun Yi and Tobias

Glasmachers.

• D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber. Natural Evolution

Strategies. In IEEE Congress on Evolutionary Computation (CEC), 2008a

• Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber. Stochastic Search us-

ing the Natural Gradient. In International Conference on Machine Learn-

ing (ICML), number 1, 2009b

• Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber. Efficient Natural

Evolution Strategies. In Genetic and Evolutionary Computation Confer-

ence (GECCO), 2009a

Best Paper Award

• T. Schaul and J. Schmidhuber. Towards Practical Universal Search. In

Conference on Artificial General Intelligence (AGI), Lugano, 2010b

• T. Rückstieß, F. Sehnke, T. Schaul, D. Wierstra, Y. Sun, and J. Schmid-

huber. Exploring Parameter Space in Reinforcement Learning. Paladyn

Journal of Behvioral Robotics, 1(1):14–24, 2010

• T. Glasmachers, T. Schaul, and J. Schmidhuber. A Natural Evolution

Strategy for Multi-Objective Optimization. In Parallel Problem Solving

from Nature (PPSN), 2010a

• T. Glasmachers, T. Schaul, Y. Sun, D. Wierstra, and J. Schmidhuber.

Exponential Natural Evolution Strategies. In Genetic and Evolutionary

Computation Conference (GECCO), Portland, OR, 2010b

Nominated for Best Paper Award

• T. Schaul, T. Glasmachers, and J. Schmidhuber. High Dimensions and

Heavy Tails for Natural Evolution Strategies. In Genetic and Evolutionary

Computation Conference (GECCO), Dublin, Ireland, 2011a

xviii

0.2.2 Incorporated in Chapter 3

The chapter on curiosity-driven optimization is based mainly on one paper, but

the motivation is partly shared by other curiosity-related work.

• T. Schaul, Y. Sun, D. Wierstra, F. Gomez, and J. Schmidhuber. Curiosity-

Driven Optimization. In IEEE Congress on Evolutionary Computation

(CEC), 2011c

• T. Schaul, L. Pape, T. Glasmachers, V. Graziano, and J. Schmidhuber.

Coherence Progress: A Measure of Interestingness Based on Fixed Com-

pressors. In Fourth Conference on Artificial General Intelligence (AGI),

2011b

0.2.3 Incorporated in Chapter 4

The chapter on optimizing scalable neural networks is built upon the following

two conference papers.

• T. Schaul and J. Schmidhuber. A Scalable Neural Network Architecture

for Board Games. In IEEE Symposium on Computational Intelligence in

Games (CIG), 2008

• T. Schaul and J. Schmidhuber. Scalable Neural Networks for Board

Games. In International Conference on Artificial Neural Networks (ICANN),

2009

0.2.4 Incorporated in Appendix A

The code for all the benchmarks and algorithms of this thesis is part of the

PyBrain open source library.

• T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, T. Rück-

stieß, and J. Schmidhuber. PyBrain. Journal of Machine Learning Re-

search, 11:743–746, 2010

0.2.5 Other Publications

The following papers were published during the same time period, but are only

tangentially related to the dissertation.

• J. Togelius, T. Schaul, J. Schmidhuber, and F. Gomez. Countering Poi-

sonous Inputs with Memetic Neuroevolution. In Parallel Problem Solving

from Nature (PPSN). Springer-Verlag, 2008

• D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber. Fitness Expec-

tation Maximization. In Parallel Problem Solving from Nature (PPSN).

Springer-Verlag, 2008b

xix

• D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber. Episodic Reinforce-

ment Learning by Logistic Reward-Weighted Regression. In International

Conference on Artificial Neural Networks (ICANN), 2008c

• J. Togelius, T. Schaul, D. Wierstra, C. Igel, F. Gomez, and J. Schmid-

huber. Ontogenetic and Phylogenetic Reinforcement Learning. (3):30–33,

2009

• M. Grüttner, F. Sehnke, T. Schaul, and J. Schmidhuber. Multi-Dimensional

Deep Memory Atari-Go Players for Parameter Exploring Policy Gradients.

In International Conference on Artificial Neural Networks (ICANN), 2010

• Y. Sun, T. Glasmachers, T. Schaul, and J. Schmidhuber. Frontier Search.

In Conference on Artificial General Intelligence (AGI), Lugano, 2010

Kurzweil Prize for Best AGI Paper

• T. Schaul and J. Schmidhuber. Metalearning. Scholarpedia, 5(6):4650,

2010a

• A. A. de Moura Meneses, C. J. G. Pinheiro, P. Rancoita, T. Schaul, L. M.

Gambardella, R. Schirru, R. C. Barroso, and L. F. de Oliveira. Assessment

of neural networks training strategies for histomorphometric analysis of

synchrotron radiation medical images. Nuclear Instruments and Methods

in Physics Research Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment, 2010

• V. Graziano, T. Glasmachers, T. Schaul, L. Pape, G. Cuccu, J. Leitner,

and J. Schmidhuber. Artificial Curiosity for Autonomous Space Explo-

ration. Acta Futura (in press), 2011

• M. B. Ring and T. Schaul. Q-error as a Selection Mechanism in Modular

Reinforcement-Learning Systems. In International Joint Conference on

Artificial Intelligence (IJCAI), 2011

xx

0.3 Notation

Table 1 lists a mixture of the notation used throughout the dissertation, as well

as and commonly used symbols.

Table 1: Notation and symbols used.

Symbol Description
N,Z,R set of natural, integer, real numbers
S search space
d search space dimension
f(·) objective/fitness function
O(·) order of (computational) complexity
δ (·, ·) Kronecker delta function
Γ(·) Gamma function
x vector (bold)
‖x‖ Euclidean norm of x
M matrix (bold, capitalized)
M

> transpose of M
tr(M) trace of matrix M

I identity matrix
E[·] expectation
π(·) probability density

∼ N (·, ·) sampling from Gaussian distribution
Φ (·) cumulative Gaussian distribution function
φ (·) Gaussian density function
D(·‖·) Kullback-Leibler divergence
F Fisher information matrix

H(·), H(·|·) entropy, conditional entropy
I (X ;Y) mutual information

ψ(·|·),Ψ(·|·) information gain, expected information gain
G Gaussian process

k(·, ·) kernel function
θ search distribution parameters
J objective (expected fitness)
∇θJ plain gradient
∇̃θJ natural gradient
µ mean vector
σ2 variance
Σ covariance matrix
z sample point
λ population size
η learning rate

xxi

xxii

Acknowledgments

M
any people have a share in this thesis coming about. First of all, I would

like to thank my supervisor Jürgen Schmidhuber for his support, advice,

and for leaving me the freedom to explore my topics of interest.

Most of my research has been collaborative, and this thesis would not be half

of what it is without the insights, contributions and advice of these colleagues

that have become friends: Daan Wierstra, Sun Yi, Tobias Glasmachers, Julian

Togelius and Faustino Gomez.

I am grateful to all the people at IDSIA for making my stay truly enjoy-

able, on both a professional and a personal level; and in particular to Cinzia

Daldini whose magic powers resolved all administrative issues. For stimulating

discussions, memorable experiences and just generally the good times, I’d like

to thank Alex, Anderson, Andreas, Bas, Cassio, Cyrus, Dan, Daniil, Dennis,

Engin, Florian, Fred, Gianni, Giovanni, Giuse, Hung, Jan, Jan, Jörg, Jonathan,

Juxi, Kail, Leo, Linus, Mark, Matt, Matteo, Niels, Nikos, Ola, Paola, Santi, Si-

mon, Shane, Somayeh, Ueli, Varun, Vincent and all the others that transformed

IDSIA into a great place to work, and Lugano into a great place to live.

I would like to thank the rest of the PyBrain team, namely Thomas Rück-

stieß, Frank Sehnke and especially Justin Bayer for speeding up the PyBrain

neural network implementations to such a level that the extensive experiments

became feasible; and also Mandy Grüttner for implementing the framework to

interact with the heuristic Atari-Go player.

I thank the many anonymous reviewers that have invested their time to

provide feedback on the papers that became part of the dissertation: Especially

the more critical comments helped improve the quality a lot. A special thanks

also to Jan, Claudia and Joé who patiently proofread the dissertation and helped

iron out the kinks.

I am also grateful to the Swiss National Science Foundation that provided

the principal funding for this research (grant number 200020-122124/1).

I am deeply indebted and thankful to my parents, for an upbringing and

education infused with happiness, curiosity and freedom, and for supporting

and encouraging me throughout all those years abroad.

Above all, I want to thank Claudia, for her energy, her patience and her

love.

xxiii

xxiv

Chapter 1

Introduction: Continuous
Black-box Optimization

If you refuse to accept anything but the best

you will very often get it.

W. Somerset Maugham

A
s the foundation for the entire thesis, this chapter formally introduces op-

timization, and presents a brief taxonomy of its variants, zooming in on

continuous black-box optimization in particular. We discuss evaluation meth-

ods, and review some of the most pertinent state-of-the-art approaches. By

showing the breadth of applicability, this chapter also provides context and mo-

tivation for the algorithms presented in the following chapters. Finally, we look

at some of the unanswered questions of the field.

1.1 Problem Definition

The aim of optimization is to find the best solution to some type of problem,

for example, finding the combination of brewing temperature and pressure that

leads to the best coffee taste. Formally, function optimization is defined as find-

ing the best solution x? in a search space S (or solution space), which satisfies:

x? = argmax
x∈S

f(x),

where f : S 7→ R is called the objective function (also known as fitness function,

see also Figure 1.1). In the coffee example, the search points x would be combi-

nations of temperatures and pressures and f would be a subjective rating given

by the taster. Together, the objective function f and the search space S define

an optimization problem. An equivalent formulation describes the minimization

case, where that x? is sought that minimizes f , in which case the objective

function is often called cost function (or energy potential).

The solution x? does not need to be unique in S, in which case it is sufficient

to find one of them. If elements of S are composed of multiple variables we call

those decision variables.

1

The ensuing subsections will specify a number of useful distinctions and

special cases.

1.1.1 Continuous Optimization: Real-valued Solution

Space

Continuous optimization is the class of optimization problems where S is a sub-

set of Rd (thus d is the dimension of the solution space). In addition, S is

generally assumed to be connected (i.e., cannot be partitioned into two open

subsets). Note that the term ‘continuous’ refers to the continuous decision vari-

ables (that is, the components of x), and does not imply that f is a continuous

function.

Working in a continuous solution space has both advantages and disadvan-

tages: The fundamental problem is that the space is infinite, and therefore

finding x? in finite time can only be guaranteed in special cases. On the other

hand, many realistic objective functions are relatively smooth, which permits a

whole plethora of approaches that take advantage of this (e.g., gradient ascent

methods), which cannot be applied on discrete solution spaces, so in practice,

continuous problems are often solved faster than discrete ones (which are usually

NP-hard).

The subfield complementary to continuous optimization is discrete optimiza-

tion, and includes, among others, integer programming. The same dichotomy

is sometimes expressed as numerical optimization (continuous) versus combi-

natorial optimization (discrete). Hybrid cases exist as well, where part of the

solution x is continuous and part is discrete, e.g., mixed integer programming

problems.

A constrained continuous search space is a subset of Rd bounded by a col-

lection of inequalities (generally linear ones), which define the set of feasible

solutions. Constraints add additional difficulty to optimization problems, in

particular when the optimum lies on the search space boundary (i.e., is not

an interior point). In this case, optimization methods require an initial fea-

sible solution x0 from which to start the optimization. Entire research fields

are dealing with the issues specific to constrained optimization (most notably,

convex optimization), but approaches designed for unconstrained optimization

can be applied too: for example, the objective function can be modified to in-

clude a penalty term that keeps the solutions found within the feasible region,

after which continuous optimization techniques can be employed to solve the

constrained problem.

1.1.2 Black-box Optimization: Unknown Function

While optimization was originally developed for objective functions that were

known, but where the optimum could not be calculated analytically, some of the

algorithms apply equally well to the case where the function is unknown, which

2

spawned the subfield of black-box optimization (alluding to the fact that the

objective function is like a black box, we know nothing about its internals, can

only observe what goes in, and what comes out). The field is also known as direct

search, or derivative-free optimization, because one of the key unavailable pieces

of information is the derivative of the function, which many other optimization

methods rely on; it is closely related to the field of metaheuristics. Also, most

algorithms for black-box optimization fall into the category of randomized search

methods , which introduce randomness in the search process.

It is worth noting that while the methods of black-box optimization were

developed for problems where the function is unknown, they are sometimes

applied successfully when the analytical form is available. Prominent examples

are non-differentiable functions, deceptive functions (where gradient information

might lead the search astray) and functions with uninformative gradients (e.g.,

piece-wise constant).

1.1.3 Local Optimization: Find a Nearby Optimum

Many continuous optimization problems are multi-modal , that is, there exist

multiple solutions x+ that are locally optimal:

f(x+) = max
||x−x+||<ε

f(x)

for some small radius ε (see also Figure 1.1). In general, only one local optimum

is also the global optimum. It is challenging to determine whether the best local

optimum found so far is x?, but for some purposes a local optimum is a sufficient

result. We thus distinguish global optimization methods, which aim at finding

the true optimum x?, and local optimization methods which contend themselves

with a (reasonably good) local optimum. A local optimization algorithm with

a randomized component can be restarted multiple times, in order to increase

the probability of hitting the global optimum, or just reaching a better local

optimum.

1.1.4 Noisy Optimization: Functions Corrupted by

Noise

In many real-world problems, it is unrealistic to assume that we can measure

the objective function f precisely, as it is easily corrupted by measurement or

process noise, and multiple measurements of f(x) do not give the same result (for

a given x). Noisy functions can be decomposed into a deterministic component

fdet and a stochastic function gsto:

f(x) ∼ gsto(x, fdet(x))

Some black-box optimization methods are ill-equipped to deal with noise

3

Figure 1.1: Illustration of a fitness function f(x) (in this case, continuous and
one-dimensional S = R) with the global optimum at x? and a local optimum at x+.

(see Auger et al., 2010), which underlines the need for robust approaches.

1.1.5 Multi-objective Optimization

One of the recent extensions of the optimization framework has been from single-

objective to multi-objective optimization (MOO, also known as multi-criteria

optimization, Deb et al., 2002), where the aim is to maximize multiple objective

functions f1, . . . , fm of the same solution space, simultaneously. The solution

to a multi-objective optimization problem is no longer a single point x?, but

a (potentially infinite) set X? ∈ S, known as the Pareto optimum (or Pareto-

front), which includes all elements of S that are non-dominated , that is

∀x ∈ X?, @y ∈ S, s.t.
{

fi(y) > fi(x)

fj(y) ≥ fj(x) ∀j 6= i
,

In other words, if x is Pareto-optimal, then no other point y can be better or

equal on all objectives and strictly better on at least one objective.

Many problems can very naturally be viewed as having multiple objectives

(e.g., minimizing fuel consumption while simultaneously maximizing speed).

While traditionally those objectives have been traded off into a single objective

to be optimized, a number of arguments can be put forward in favor of handling

the multiple objectives explicitly. For one, in many practical applications it

is more advantageous to find and then choose from the Pareto-front, rather

than deciding upon a trade-off a priori and then maximizing it. Furthermore,

in multi-objective evolutionary methods the diversity of encountered solutions

is larger than for single-objective optimization with fixed trade-offs, which in

turn can improve over the single-objective optimization performance at its own

game, as it may allow the search to circumnavigate local optima (Knowles et al.,

2001).

4

For the remainder of this dissertation, we will no longer concern ourselves

with discrete or constrained solution spaces, nor with known objective functions,

and thus take the term “optimization” to refer to the continuous, unconstrained

black-box optimization, if not specified otherwise. Most of the problems under

consideration are noise-free, but some have their objective functions corrupted

by noise (section 2.7.2). Also, we will mostly consider single objectives, but

in a couple of instances extend our work to multi-objective optimization (e.g.,

sections 16 and 3.2).

1.2 Evaluating Optimization Algorithms

To evaluate and compare different optimization algorithms on the same problem,

we have basically three criteria that the algorithm should minimize:

1. The expected (or worst-case) number of function evaluations n until the

optimum is found (and directly related, the probability of finding the

optimum within a specified number of evaluations),

2. the expected (or worst-case) total computation time until the optimum is

found,

3. the expected (or worst-case) cumulative regret after evaluating candidate

solutions x1 to xn, which is

Rn =
n∑

i=1

f(x?)− f(xi)

in other words, the difference between the sum of fitnesses (or costs) during

the search, and the best achievable sum if the optimum had been known

in advance.

Note that the desired optimum in all those cases does not need to be the true

optimum, but could be a local optimum x+, or an ε-approximation f(x̂?) ≥
f(x?)− ε.

For some applications, some of these measures will be more useful than

others. In the present work, we will mostly focus on the first measure, because it

is the simplest one, and independent of implementation and hardware questions

(unlike the second). Also, in contrast to using expected regret, counting function

evaluations puts the emphasis on the final outcome of the optimization.

There is a class of problems that deserves special attention because it ex-

plicitly demands the minimization of the number of function evaluations, where

each evaluation is very costly: we speak of costly optimization (or expensive opti-

mization), which covers many real-world optimization problems (see Section 1.4

for examples). For this class, even a small reduction in the required number of

evaluations justifies a significant investment of computational resources.

5

Analyzing the computational complexity of a single iteration of an algorithm

can be another fruitful measure, especially when the algorithm under considera-

tion is applied to high-dimensional search spaces. The measure of computation

time (2) contains this information implicitly.

Convergence analysis allows analyzing and comparing algorithms on a the-

oretical level. Assume that

lim
t→∞

|f(xt+1)− f(x?)|
|f(xt)− f(x?)|p

= c

holds for some constants 0 ≤ c < 1 and p ≥ 1, where xt are the candidate

solutions evaluated by the algorithm in iteration t. If p > 1, then we have

superlinear convergence, and call p the order of convergence. If c = 1 and

the algorithm converges (i.e. limt→∞ |f(xt) − f(x?)| = 0), the convergence is

sublinear . Otherwise (0 < c < 1 and p = 1), we speak of linear convergence,

and c is called the rate of convergence.

Clearly, evaluating and comparing algorithms on a single problem is not

sufficient to determine their quality, as much of their benefit lies in their perfor-

mance generalizing to large classes of problems. One of the goals of research in

optimization is, arguably, to provide practitioners with reliable, powerful and

general-purpose algorithms. This is why we test our algorithms on a whole

battery of benchmark functions, taken from different problem classes.

1.3 State-of-the-Art Approaches

Here, we will briefly review the spectrum of methods that have been applied

to continuous, unconstrained black-box optimization (some of which are more

generally applicable). Attempting to be exhaustive would be very difficult given

the breadth of the field1. Instead we will try to point out the most representative

algorithms, going into the most depth for those approaches that are currently

producing state-of-the-art results, and that are most closely related to our own.

A first class of methods was inspired by classic optimization methods, includ-

ing simplex methods such as Nelder-Mead (Nelder and Mead, 1965), as well as

members of the quasi-Newton family of algorithms (Fletcher, 1987). Simulated

annealing (Kirkpatrick et al., 1983), a popular method introduced in 1983, was

inspired by thermodynamics, and is in fact an adaptation of the Metropolis-

Hastings algorithm (Hastings, 1970; Metropolis et al., 1953).

1.3.1 Evolutionary Methods

Most prominent among the more heuristic methods are those inspired by evo-

lution, developed from the early 1950s on, including the broad class of genetic

1Also, it turns out that some of the approaches in metaheuristics, derived from colorful
analogies, can be reduced entirely to much earlier work; for a discussion of the striking case
of ‘Harmony Search’, a veiled derivative of evolution strategies, see Weyland, 2010.

6

algorithms (GA; Goldberg, 1989; Holland, 1992). Mimicking natural evolution

(Darwin, 1859), these approaches maintain a ‘population’ of ‘individuals’ (search

points) that are evaluated in batch. In each ‘generation’ the best individuals

(those with the highest fitness f , the ‘survivors’) are selected to ‘procreate’

and produce offspring (i.e., the population in the next generation), while the

others are discarded. Procreation can introduce small-scale changes to the the

individuals’ genotype x (‘mutations’), or perform large-scale recombinations of

individuals (‘cross-over’). Among the most successful GA for continuous opti-

mization are differential evolution (Storn and Price, 1997) where the mutations

are based upon the difference vectors between the members of the population,

and the related particle swarm optimization (Kennedy and Eberhart, 2001).

Estimation of distribution algorithms (EDA; Larrañaga, 2002) on the other

hand rely on modeling the population of (fittest) search points by a distribution,

from which new individuals are then drawn; in contrast to GA, using only the

estimated distribution and not the old population. Among its representatives

are Estimation of Multivariate Normal Algorithm (EMNA) and the closely re-

lated cross-entropy method (CEM; Rubinstein and Kroese, 2004), where the

search distribution is a multivariate Gaussian, as well as Fitness Expectation-

Maximization (FEM; Wierstra et al., 2008b) where the distribution is updated

using an expectation-maximization approach.

Evolution strategies (ES), introduced by Ingo Rechenberg and Hans-Paul

Schwefel in the 1960s and 1970s (Rechenberg and Eigen, 1973; Schwefel, 1977),

were designed to cope with high-dimensional continuous-valued domains and

have remained an active field of research for more than four decades (Beyer and

Schwefel, 2002). They are distinct from GA in that mutations modify each of the

continuous decision variables simultaneously, but only very slightly; this process,

after several generations, was shown to lead to reasonable to excellent results

for many difficult continuous optimization problems. The algorithm framework

has been developed extensively over the years to include self-adaptation of the

search parameters, and the representation of correlated mutations by the use

of a full covariance matrix. This allowed the framework to capture interrelated

dependencies by exploiting the covariances while ‘mutating’ individuals for the

next generation. The culminating algorithm, covariance matrix adaptation evo-

lution strategies (CMA-ES ; Hansen and Ostermeier, 2001, see also section 2.5.4

for more detail), has proven successful in numerous studies (e.g., Friedrichs and

Igel, 2005; Muller et al., 2002; Shepherd et al., 2006).

1.3.2 Response Surface Methods

The standard tool for global optimization are response surface methods (RSM;

Box and Wilson, 1951; Moore and Schneider, 1996). They store all available

evaluations (some possibly given in advance) and use them to model the cost

function, which useful for dimensionality reduction, visualization, assessing un-

7

certainty, and ultimately determining good points to explore (Booker et al.,

1998; Jones et al., 1998). A multitude of regression techniques have been used

for modeling the response surface, from the original polynomials (Box and Wil-

son, 1951) to more recent Gaussian processes (Jones, 2001; Rasmussen and

Williams, 2006). In addition, a statistical model of the cost function allows

expert knowledge to be incorporated in the form of a Bayesian prior.

1.4 Impact and Applications

Many real world optimization problems that are too difficult or complex to

model directly have been solved in using black-box optimization. Here, we give

a selection of work in different fields that illustrate the very broad applicability

of the framework.

In health sciences, optimization techniques were employed for matching CT-

scans to ultra-sound images (Winter et al., 2005), and for forensic identification

(Ibáñez et al., 2009). In chemistry, black-box optimization were used for chro-

matography (Jebalia et al., 2007) and finding stable crystalline structures (Wales

and Doye, 1998). In urban development, black-box methods have helped opti-

mize resource flows (Kämpf and Robinson, 2009), groundwater quality (Bayer

et al., 2007), power distribution (Miguez et al., 1998; Wang et al., 2007) and ra-

dio network design (Mendes et al., 2006). Furthermore, optimization techniques

can aid in determining appropriate features, for example for speaker identifica-

tion (Charbuillet et al., 2009). In space research, they have been utilized, among

others, for evolving orbit transfer maneuvers (Minisci and Avanzini, 2008) and

docking approaches (Leitner et al., 2010). They also have a long tradition in de-

vice design (e.g. Klockgether and Schwefel, 1970) or aeronautics (Booker et al.,

1998; Hasenjäger et al., 2005), as well as control (Hansen et al., 2009).

Besides the broad range of direct applications, black-box optimization is also

a common component of other machine learning techniques. It is used to train

neural networks (‘neuro-evolution’, see e.g. Gomez et al., 2008, or sections 2.7

and 4.4), to optimize kernel parameters (model selection, see Friedrichs and Igel,

2005, or section 7) or as a component of multi-objective optimization algorithms

(Igel et al., 2007, or section 16).

1.5 Related Problem Domains

Black-box optimization is closely related to a number of other domains, so that

techniques and enhancements developed for optimization can often be transfered

or adapted to one of them, or vice-versa.

Reinforcement Learning. The goal of (RL; Sutton and Barto, 1998) is to

optimize the behavior of an agent that interacts with an environment without

being told the correct behavior (as in supervised learning); instead, the agent

8

is only informed about how well it did, in terms of a scalar value called re-

ward. There is a double link between RL and optimization. On one hand, we

may consider optimization to be a simple sub-problem of RL, with only a single

environment state and a single time-step per episode, where the fitness corre-

sponds directly to the reward (i.e., a bandit problem). On the other hand, more

interestingly, the return of a whole RL episode can be interpreted as a single

fitness evaluation, where the search space S is that of policy parameters. In this

case, parameter-based exploration in RL is equivalent to black-box optimization.

Moreover, when the exploration in parameter space is normally distributed, a

direct link between RL and evolution strategies can be established.

Active Learning. In active learning, the aim is to actively query the label of

an unlabeled data point, in such a way that the classifier or predictor improves

maximally. This procedure is closely related to expensive global optimization, in

that each search point to be evaluated is chosen with care (Krause and Guestrin,

2007). The goal is different, however: active learning is concerned with obtaining

an accurate model of the data, while modeling is secondary in optimization, and

only useful inasmuch as it facilitates locating optima more efficiently. Therefore,

active learning cannot be used naively for optimization.

Markov chain Monte Carlo. Sampling algorithms, in particular the widely

used class of Markov chain Monte Carlo methods (Andrieu et al., 2003), are

related to optimization in the sense that seeking out high-probability areas

(modes) in a multi-dimensional space is very similar to finding high fitness val-

ues in optimization; and in fact differential evolution techniques have already

been applied to sampling (Braak, 2006). The crucial difference however is that

in optimization, the goal is not to produce collection of samples that correspond

to the distribution, but only to find the best search point.

1.6 Open Questions

Approaches to continuous black-box optimization are far from unified. While

evolution strategies prove to be among the most effective framework, their ad

hoc procedures remain heuristic in nature. Thoroughly analyzing the actual

dynamics of the procedure turns out to be difficult, the considerable efforts of

various researchers notwithstanding (Auger, 2005; Beyer, 2001; Jebalia et al.,

2010). In other words, ES (including CMA-ES), while powerful, still lack a

clear derivation from first principles. However, for a black-box optimization to

become a true end-user product, it should be reliable, understood, flexible and

efficient. In chapter 2, therefore, we will concern ourselves with the question:

Can we design a family of algorithms that are derived from first prin-

ciples, which reach state-of-the-art performance, while at the same

9

time being flexible enough to permit variants for a whole range of

problem classes?

For domains where data remains expensive and scarce, it is promising to harness

the ever-cheaper computational resources for analyzing which search point to

evaluate next. One principle to guide this analysis, which has not yet been

investigated in this context is artificial curiosity (Schmidhuber, 1991, 2007).

Thus, in chapter 3, we will ask:

Can artificial curiosity be an effective guiding principle for deter-

mining the most informative search points in costly optimization?

10

Chapter 2

Natural Evolution
Strategies

You can’t help someone get up a hill

without getting closer to the top yourself.

H. Norman Schwarzkopf

N
atural Evolution Strategies (NES) are a family of algorithms that consti-

tutes a more principled approach to black-box optimization than estab-

lished evolutionary algorithms. NES maintains a parameterized distribution on

the set of solution candidates, and the natural gradient is used to update the

distribution’s parameters in the direction of higher expected fitness. We intro-

duce a collection of techniques that address issues of convergence, robustness,

sample complexity, computational complexity and sensitivity to hyperparame-

ters. This chapter explores a number of implementations of the NES family,

ranging from general-purpose multi-variate normal distributions to heavy-tailed

and separable distributions tailored towards global optimization and search in

high-dimensional spaces, respectively. Our results show best published perfor-

mance on various standard benchmarks, as well as competitive performance on

others.

2.1 The NES Family

Natural Evolution Strategies (NES) are well-grounded continuous black-box

optimization algorithms, which instead of maintaining a population of search

points, iteratively update a search distribution. Like CMA-ES, they can be cast

into the framework of evolution strategies.

The general procedure is as follows: the parameterized search distribution is

used to produce a batch of search points, and the fitness function is evaluated at

each such point. The distribution’s parameters (which include strategy parame-

ters) allow the algorithm to adaptively capture the (local) structure of the fitness

function. For example, in the case of a Gaussian distribution, this comprises

the mean and the covariance matrix. From the samples, NES estimates a search

11

gradient on the parameters towards higher expected fitness. NES then performs

a gradient ascent step along the natural gradient , a second-order method which,

unlike the plain gradient, renormalizes the update w.r.t. uncertainty. This step

is crucial, since it prevents oscillations, premature convergence, and undesired

effects stemming from a given parameterization. The entire process reiterates

until a stopping criterion is met.

All members of the ‘NES family’ operate based on the same principles. They

differ in the type of distribution and the gradient approximation method used.

Different search spaces require different search distributions; for example, in low

dimensionality it can be highly beneficial to model the full covariance matrix.

In high dimensions, on the other hand, a more scalable alternative is to limit the

covariance to the diagonal only. In addition, highly multi-modal search spaces

may benefit from more heavy-tailed distributions (such as Cauchy, as opposed

to the Gaussian). A last distinction arises between distributions where we can

analytically compute the natural gradient, and more general distributions where

we need to estimate it from samples.

2.1.1 Chapter Outline

As this chapter is the longest one of the dissertation, we briefly outline its struc-

ture. Section 2.2 presents the general idea of search gradients, outlining how to

perform stochastic search using parameterized distributions while doing gradi-

ent ascent towards higher expected fitness. The limitations of the plain gradient

are exposed in section 2.2.2, and subsequently addressed by the introduction of

the natural gradient (section 2.3), resulting in the canonical NES algorithm.

Section 2.4 then regroups a collection of techniques that enhance NES’s

performance and robustness. This includes fitness shaping (designed to ren-

der the algorithm invariant w.r.t. order-preserving fitness transformations, sec-

tion 2.4.1), importance mixing (designed to recycle samples so as to reduce

the number of required fitness evaluations, section 2.4.3), adaptation sampling,

which is a novel technique for adjusting learning rates online (section 2.4.4),

and finally restart strategies, designed to improve success rates on multi-modal

problems (section 2.4.5).

In section 2.5, we look in more depth at multivariate Gaussian search distri-

butions, constituting the most common case. We show how to constrain the co-

variances to positive-definite matrices using the exponential map (section 2.5.1),

and how to use a change of coordinates to reduce the computational complexity

from O(d6) to O(d3), resulting in the xNES algorithm (section 2.5.2). We also

investigate the connection to CMA-ES in depth (section 2.5.4) and introduce a

hill-climber variant (section 2.5.5).

Next, in section 2.6, we develop the breadth of the framework, motivating its

usefulness and deriving a number of NES variants with different search distri-

butions. First, we show how a restriction to diagonal parameterization permits

12

the approach to scale to very high dimensions due to its linear complexity (sec-

tion 2.6.1). Second, we provide a novel formulation of NES for the whole class of

multi-variate versions of distributions with rotation symmetries (section 2.6.2),

including heavy-tailed distributions with infinite variance, such as the Cauchy

distribution (section 2.6.3).

The ensuing experimental investigations show the competitiveness of the

approach on a broad range of benchmarks (section 2.7). The chapter ends

with a discussion on the effectiveness of the different techniques and types of

distributions (section 2.8).

2.2 Search Gradients

The core idea of Natural Evolution Strategies is to use a search gradient to

update the parameters of the search distribution. We define the search gradient

as the sampled gradient of expected fitness. The search distribution can be

taken to be a multinormal distribution, but could in principle be any distribution

for which we can find derivatives of its log-density w.r.t. its parameters. For

example, useful distributions include Gaussian mixture models and the Cauchy

distribution with its heavy tail.

If we use θ to denote the parameters of distribution π(z | θ) and f(x) to

denote the fitness function for samples z, we can write the expected fitness

under the search distribution as

J(θ) = Eθ[f(z)] =

∫
f(z) π(z | θ) dz. (2.1)

and rewrite the derivatives as:

∇θJ(θ) =∇θ
∫
f(z) π(z | θ) dz

=

∫
f(z) ∇θπ(z | θ) dz

=

∫
f(z) ∇θπ(z | θ)

π(z | θ)
π(z | θ) dz

=

∫ [
f(z) ∇θ log π(z | θ)

]
π(z | θ) dz

=Eθ [f(z) ∇θ log π(z | θ)] .

From this form we obtain the Monte Carlo estimate of the search gradient from

samples z1 . . . zλ as

∇θJ(θ) ≈
1

λ

λ∑

k=1

f(zk) ∇θ log π(zk | θ), (2.2)

where λ is the population size. This gradient on expected fitness provides a

search direction in the space of search distributions. A straightforward gradient

13

ascent scheme can thus iteratively update the search distribution

θ ← θ + η∇θJ(θ),

where η is a learning rate parameter. Algorithm 1 provides the pseudocode for

this very general approach to black-box optimization by using a search gradient

on search distributions.

Algorithm 1: Canonical Search Gradient algorithm
input: f , θinit

1 repeat

2 for k = 1 . . . λ do

3 draw sample zk ∼ π(·|θ)
4 evaluate the fitness f(zk)
5 calculate log-derivatives ∇θ log π(zk|θ)
6 end

7 ∇θJ ←
1

λ

λ∑

k=1

∇θ log π(zk|θ) · f(zk)

8 θ ← θ + η · ∇θJ
9 until stopping criterion is met

Utilizing the search gradient in this framework is similar to evolution strate-

gies in that it iteratively generates the fitnesses of batches of vector-valued

samples – the ES’s so-called candidate solutions. It is different however, in that

it represents this ‘population’ as a parameterized distribution, and in the fact

that it uses a search gradient to update the parameters of this distribution,

which is computed using the fitnesses.

2.2.1 Search Gradients for Gaussian Distributions

In the case of the ‘default’ d-dimensional multi-variate normal distribution, we

collect the parameters of the Gaussian, the mean µ ∈ Rd (candidate solution

center) and the covariance matrix Σ ∈ Rd×d (mutation matrix), in a single

concatenated vector θ = 〈µ,Σ〉. However, to sample efficiently from this dis-

tribution we need a square root of the covariance matrix (a matrix A ∈ Rd×d

fulfilling A
>
A = Σ). Then z = µ+A

>
s transforms a standard normal vector

s ∼ N (0, I) into a sample z ∼ N (µ,Σ). Here, I = diag(1, . . . , 1) ∈ Rd×d denotes

the identity matrix. Let

π(z | θ) =
1

(
√
2π)d det(A)

· exp
(
−1

2

∥∥∥A−1 · (z − µ)
∥∥∥
2
)

=
1√

(2π)d det(Σ)
· exp

(
−1

2
(z− µ)>Σ−1(z− µ)

)

denote the density of the multinormal search distribution N (µ,Σ).

In order to calculate the derivatives of the log-likelihood with respect to

14

individual elements of θ for this multinormal distribution, first note that

log π (z|θ) = −d
2
log(2π)− 1

2
log detΣ− 1

2
(z− µ)

>
Σ

−1 (z− µ) .

We will need its derivatives, that is, ∇µ log π (z|θ) and ∇Σ log π (z|θ). The first

is trivially

∇µ log π (z|θ) = Σ
−1 (z− µ) , (2.3)

while the latter is

∇Σ log π (z|θ) = 1

2
Σ

−1 (z− µ) (z− µ)
>
Σ

−1 − 1

2
Σ

−1. (2.4)

In order to preserve symmetry, to ensure non-negative variances and to keep

the mutation matrix Σ positive definite, Σ needs to be constrained. One way

to accomplish that is by representing Σ as a product Σ = A
>
A (for a more

sophisticated solution to this issue, see section 2.5.1). Instead of using the

log-derivatives on ∇Σ log π (z) directly, we then compute the derivatives with

respect to A as

∇A log π (z) = A

[
∇Σ log π (z) +∇Σ log π (z)

>
]
.

Using these derivatives to calculate ∇θJ , we can then update parameters θ =

〈µ,Σ = A
>
A〉 as θ ← θ + η∇θJ using learning rate η. This produces a

new center µ for the search distribution, and simultaneously self-adapts its

associated covariance matrix Σ. To summarize, we provide the pseudocode for

following the search gradient in the case of a multinormal search distribution in

Algorithm 2.

Algorithm 2: Search Gradient algorithm: Multinormal distribution
input: f , µinit,Σinit

1 repeat

2 for k = 1 . . . λ do

3 draw sample zk ∼ N (µ,Σ)
4 evaluate the fitness f(zk)

5

calculate log-derivatives:
∇µ log π (zk|θ) = Σ

−1 (zk − µ)

∇Σ log π (zk|θ) = − 1
2Σ

−1 + 1
2Σ

−1

(zk − µ) (zk − µ)
>
Σ

−1

6 end

7 ∇µJ ← 1
λ

∑λ
k=1∇µ log π(zk|θ) · f(zk)

8 ∇ΣJ ← 1
λ

∑λ
k=1∇Σ log π(zk|θ) · f(zk)

9 µ← µ+ η · ∇µJ
10 Σ← Σ+ η · ∇ΣJ

11 until stopping criterion is met

2.2.2 Limitations of Plain Search Gradients

15

As the attentive reader will have realized, there exists at least one major issue

with applying the search gradient as-is in practice: It is impossible to precisely

locate a (quadratic) optimum, even in the one-dimensional case. Let d = 1,

θ = 〈µ, σ〉, and samples z ∼ N (µ, σ2). Equations (2.3) and (2.4), the gradients

on µ and σ, become

∇µJ =
z − µ
σ2

∇σJ =
(z − µ)2 − σ2

σ3

and the updates, assuming simple hill-climbing (i.e. a population size λ = 1)

read:

µ ← µ+ η
z − µ
σ2

σ ← σ + η
(z − µ)2 − σ2

σ3
.

For any objective function f that requires locating an (approximately) quadratic

optimum with some degree of precision (e.g. f(z) = z
2), σ must decrease, which

in turn increases the variance of the updates, as ∆µ ∝ 1
σ and ∆σ ∝ 1

σ for a

typical sample z. In fact, the updates become increasingly unstable, the smaller

σ becomes, an effect which a reduced learning rate or an increased population

size can only delay but not avoid. Figure 2.1 illustrates this effect. Conversely,

whenever σ � 1 is large, the magnitude of a typical update is severely reduced.

Clearly, this update is not at all scale-invariant : Starting with σ � 1 makes

all updates minuscule, whereas starting with σ � 1 makes the first update huge

and therefore unstable.

We conjecture that this limitation constitutes one of the main reasons why

search gradients have not been developed before: in isolation, the plain search

gradient’s performance is both unstable and unsatisfying, and it is only the

application of natural gradients (introduced in section 2.3) which tackles these

issues and renders search gradients into a viable optimization method.

2.3 Using the Natural Gradient

Instead of using the plain stochastic gradient for updates, NES follows the nat-

ural gradient . The natural gradient was first introduced by Amari in 1998, and

has been shown to possess numerous advantages over the plain gradient (Amari,

1998; Amari and Douglas, 1998). In terms of mitigating the slow convergence

of plain gradient ascent in optimization landscapes with ridges and plateaus,

natural gradients are a more principled (and hyper-parameter-free) approach

than, for example, the commonly used momentum heuristic.

The plain gradient ∇J simply follows the steepest ascent in the space of the

actual parameters θ of the distribution. This means that for a given small step-

16

opt

opt

opt

1

2

3

200 400 600 800 1000
Generation

10-3

10-2

10-1

100 ��

Figure 2.1: Left: Schematic illustration of how the search distribution adapts in
the one-dimensional case: from (1) to (2), µ is adjusted to make the distribution
cover the optimum. From (2) to (3), σ is reduced to allow for a precise localization
of the optimum. The step from (3) to (1) then is the problematic case, where a
small σ induces a largely overshooting update, making the search start over again.
Right: Progression of µ (black) and σ (red, dashed) when following the search gradient
towards minimizing f(z) = z

2, executing Algorithm 2. Plotted are median values over
1000 runs, with a small learning rate η = 0.01 and λ = 10, both of which mitigate the
instability somewhat, but still show the failure to precisely locate the optimum (for
which both µ and σ need to approach 0).

size ε, following it will yield a new distribution with parameters chosen from

the hypersphere of radius ε and center θ that maximizes J . In other words, the

Euclidean distance in parameter space between subsequent distributions is fixed.

Clearly, this makes the update dependent on the particular parameterization

of the distribution, therefore a change of parameterization leads to different

gradients and different updates. See also Figure 2.2 for an illustration of how

this effectively renormalizes updates w.r.t. uncertainty.

The key idea of the natural gradient is to remove this dependence on the

parameterization by relying on a more ‘natural’ measure of distance D(θ′‖θ)
between probability distributions π (z|θ) and π (z|θ′). One such natural dis-

tance measure between two probability distributions is the Kullback-Leibler

divergence (Kullback and Leibler, 1951). The natural gradient can then be

formalized as the solution to the constrained optimization problem

max
δθ

J (θ + δθ) ≈ J (θ) + δθ>∇θJ,

s.t. D (θ + δθ‖θ) = ε,

where J (θ) is the expected fitness of equation (2.1), and ε is a small increment

size. Now, we have for δθ → 0,

D (θ + δθ‖θ) = 1

2
δθ>F (θ) δθ,

17

µµ

σσ

Figure 2.2: Illustration of plain versus natural gradient in parameter space. Con-
sider two parameters, e.g. θ = (µ, σ), of the search distribution. In the plot on the
left, the solid (black) arrows indicate the gradient samples ∇θ log π(z | θ), while the
dotted (blue) arrows correspond to f(z) · ∇θ log π(z | θ), that is, the same gradient
estimates, but scaled with fitness. Combining these, the bold (green) arrow indicates
the (sampled) fitness gradient ∇θJ , while the bold dashed (red) arrow indicates the
corresponding natural gradient ∇̃θJ .
Being random variables with expectation zero, the distribution of the black arrows is
governed by their covariance, indicated by the gray ellipse. Notice that this covariance
is a quantity in parameter space (where the θ reside), which is not to be confused with
the covariance of the distribution in the search space (where the samples z reside). In
contrast, solid (black) arrows on the right represent ∇̃θ log π(z | θ), and dotted (blue)
arrows indicate the natural gradient samples f(z) · ∇̃θ log π(z | θ), resulting in the
natural gradient (dashed red).
The covariance of the solid arrows on the right hand side turns out to be the inverse of
the covariance of the solid arrows on the left. This has the effect that when computing
the natural gradient, directions with high variance (uncertainty) are penalized and
thus shrunken, while components with low variance (high certainty) are boosted, since
these components of the gradient samples deserve more trust. This makes the (dashed
red) natural gradient a much more trustworthy update direction than the (green) plain
gradient.

18

where

F =

∫
π (z|θ)∇θ log π (z|θ)∇θ log π (z|θ)> dz,

= E
[
∇θ log π (z|θ)∇θ log π (z|θ)>

]

is the Fisher information matrix of the given parametric family of search dis-

tributions. The solution to this can be found using a Lagrangian multiplier

(Peters, 2007), yielding the necessary condition

Fδθ = β∇θJ, (2.5)

for some constant β > 0. The direction of the natural gradient ∇̃θJ is given by

δθ thus defined. If F is invertible1, the natural gradient amounts to

∇̃θJ = F
−1∇θJ(θ).

The Fisher matrix can be estimated from samples, reusing the log-derivatives

∇θ log π(z|θ) that we already computed for the gradient ∇θJ . Then, updating

the parameters following the natural gradient instead of the steepest gradient

leads us to the general formulation of NES, as shown in Algorithm 3.

Algorithm 3: Canonical Natural Evolution Strategies (NES)

input: f , θinit
1 repeat

2 for k = 1 . . . λ do

3 draw sample zk ∼ π(·|θ)
4 evaluate the fitness f(zk)
5 calculate log-derivatives ∇θ log π(zk|θ)
6 end

7 ∇θJ ← 1
λ

∑λ
k=1∇θ log π(zk|θ) · f(zk)

8 F← 1

λ

λ∑

k=1

∇θ log π (zk|θ)∇θ log π (zk|θ)>

9 θ ← θ + η ·F−1∇θJ
10 until stopping criterion is met

2.4 Performance and Robustness

Techniques

In the following we will present and introduce crucial techniques to improves

NES’s performance and robustness. Fitness shaping is designed to make the

algorithm invariant w.r.t. arbitrary yet order-preserving fitness transformations

1Care has to be taken because the Fisher matrix estimate may not be (numerically) in-
vertible even if the exact Fisher matrix is.

19

(section 2.4.1). Importance mixing is designed to recycle samples so as to reduce

the number of required fitness evaluations, and is subsequently presented in

section 2.4.3. Adaptation sampling, a novel technique for adjusting learning

rates online, is introduced in section 2.4.4, and finally restart strategies, designed

to improve success rates on multi-modal problems, is presented in section 2.4.5.

2.4.1 Fitness Shaping

NES utilizes rank-based fitness shaping in order to render the algorithm invari-

ant under monotonically increasing (i.e., rank preserving) transformations of

the fitness function. For this purpose, the fitness of the population is trans-

formed into a set of utility values u1 ≥ · · · ≥ uλ. Let zi denote the ith best

individual (the ith individual in the population, sorted by fitness, such that

z1 is the best and zλ the worst individual). Replacing fitness with utility, the

gradient estimate of equation (2.2) becomes, with slight abuse of notation,

∇θJ(θ) =
λ∑

k=1

uk ∇θ log π(zk | θ). (2.6)

To avoid entangling the utility-weightings with the learning rate, we require

that
∑λ
k=1 |uk| = 1.

The choice of utility function can in fact be seen as a free parameter of the

algorithm. Throughout this chapter we will use the following

uk =
max

(
0, log(λ2 + 1)− log(i)

)
∑λ

j=1 max
(
0, log(λ2 + 1)− log(j)

) − 1

λ
,

which is directly related to the one employed by CMA-ES (Hansen and Oster-

meier, 2001), for ease of comparison. In our experience, however, this choice

has not been crucial to performance, as long as it is monotonous and based on

ranks instead of raw fitness (e.g., a function which simply increases linearly with

rank).

In addition to robustness, these utility values provide us with an elegant

formalism to describe the (1+1) hill-climber version of the algorithm within the

same framework, by using different utility values, depending on success (see

section 2.5.5 later in this chapter).

2.4.2 Fitness Baselines

Estimating the gradient ∇J (and the Fisher matrix) from samples, we are con-

cerned with keeping the variance of the estimate Var [∇J] low, so as to reduce

the number of samples required to correctly estimate it. As variance grows

quadratically with the average magnitude of the fitnesses, it can be significantly

reduced if we introduce a fitness baseline b, which does not bias the estimator,

20

as:

∇J = E [∇ log π (z) f (z)]

= E [∇ log π (z) [f (z) − b]] .

We now have have a free fitness baseline parameter b which can be used to

reduce the estimation variance, and equation (2.5) can be rewritten as:

E
[
∇ log π (z)∇ log π (z)

>
]
δθ = E [∇ log π (z) f (z)]− E [∇ log π (z) b] . (2.7)

We obtain b by realizing the lower bound

Var [∇ log π (z) [f (z)− b]] = f̄2Var

[
∇ log π (z)

(
f (z)− f̄

)

f̄

]

+Var
[
∇ log π (z)

[
f̄ − b

]]

≥ f̄2E
[
∇ log π (z)∇ log π (z)

>
]

+Var
[
∇ log π (z)

[
f̄ − b

]]
,

where f̄ = E [f (z)]. Thus, we have a minimum at b = f̄ , which does not yet

take into account any interplay between δθ and b, however. The next step, then,

is to use E [∇ log π (z)] = 0 to obtain the equation

0 + b = E [f (z)] ,

E [∇ log π (z)]
>
δθ + b = E [f (z)] ,

which, together with equation (2.7), gives the system of equations

E
[
∇ log π (z)∇ log π (z)

>
]
δθ +E [∇ log π (z)] b = E [∇ log π (z) f (z)]

E [∇ log π (z)]
>
δθ + b = E [f (z)] ,

which can be solved straightforwardly as a linear regression problem using the

pseudoinverse. When replacing the E [·] by sample averages, we then obtain the

general natural gradient estimator

δθ = (Φ>
Φ)−1

Φ
>
r

where

Φ =




∇θ log π(z1) 1
...

∇θ log π(zλ) 1




r = [f(z1), . . . , f(zλ)]
>
.

21

This solution forms the basis of the distribution-agnostic pseudocode of Algo-

rithm 4.

Algorithm 4: Natural Evolution Strategies with baselines
input: f , θinit

1 repeat

2 for k = 1 . . . λ do

3 draw sample zk ∼ π(·|θ)
4 evaluate the fitness f(zk)
5 calculate log-derivatives ∇θ log π(zk|θ)
6 end

7 Φ =



∇θ log π(z1) 1

...
...

∇θ log π(zλ) 1




8 r = [f(z1), . . . , f(zλ)]
>

9 δθ = (Φ>
Φ)−1

Φ
>
r

10 θ ← θ + η · δθ
11 until stopping criterion is met

2.4.3 Importance Mixing

In each batch, we evaluate λ new samples generated from search distribution

π (z|θ). However, since small updates ensure that the KL divergence between

consecutive search distributions is generally small, most new samples will fall

in the high density area of the previous search distribution π (z|θ′). This leads

to redundant fitness evaluations in that same area. We improve the efficiency

with a new procedure called importance mixing, which aims at reusing fitness

evaluations from the previous batch, while ensuring the updated batch conforms

to the new search distribution.

Importance mixing works in two steps: In the first step, rejection sampling is

performed on the previous batch, such that sample z is accepted with probability

min

{
1, (1− α) π (z|θ)

π (z|θ′)

}
. (2.8)

Here α ∈ [0, 1] is an algorithm hyperparameter called the minimal refresh rate.

Let λa be the number of samples accepted in the first step. In the second

step, reverse rejection sampling is performed as follows: Generate samples from

π (z|θ) and accept z with probability

max

{
α, 1− π (z|θ′)

π (z|θ)

}
(2.9)

until λ−λa new samples are accepted. The λa samples from the old batch and

λ − λa newly accepted samples together constitute the new batch. Figure 2.3

illustrates the procedure. Note that only the fitnesses of the newly accepted

22

Figure 2.3: Illustration of importance mixing. Left: In the first step, old samples
are eliminated (red triangles) according to (2.8), and the remaining samples (blue
triangles) are reused. Right: In the second step, new samples (green circles) are
generated according to (2.9).

samples need to be evaluated. The advantage of using importance mixing is

twofold: On the one hand, we reduce the number of fitness evaluations required

in each batch, on the other hand, if we fix the number of newly evaluated

fitnesses, then many more fitness evaluations can potentially be used to yield

more reliable and accurate gradients.

The minimal refresh rate parameter α has two uses. First, it avoids too low

an acceptance probability at the second step when π (z|θ′) /π (z|θ) ' 1. And

second, it permits specifying a lower bound on the expected proportion of newly

evaluated samples ρ = E
[
λ−λa

λ

]
, namely ρ ≥ α, with the equality holding if and

only if θ = θ′. In particular, if α = 1, all samples from the previous batch will

be discarded, and if α = 0, ρ depends only on the distance between π (z|θ) and

π (z|θ′). Normally we set α to be a small positive number, e.g., in this chapter

we use α = 0.1 throughout.

It can be proven that the updated batch conforms to the search distribution

π (z|θ). In the region where

(1− α) π (z|θ)
π (z|θ′) ≤ 1,

the probability that a sample from previous batches appears in the new batch

is

π (z|θ′) · (1− α) π (z|θ)
π (z|θ′) = (1− α) π (z|θ) .

The probability that a sample generated from the second step entering the batch

is απ (z|θ), since

max

{
α, 1 − π (z|θ′)

π (z|θ)

}
= α.

So the probability of a sample entering the batch is just p (z|θ) in that region.

23

The same result holds also for the region where

(1− α) π (z|θ)
π (z|θ′) > 1.

When using importance mixing in the context of NES, this reduces the sensi-

tivity to the hyperparameters, particularly the population size λ, as importance

mixing implicitly adapts it to the situation by reusing some or many previously

evaluated sample points.

2.4.4 Adaptation Sampling

To reduce the burden on determining appropriate hyper-parameters such as

the learning rate, we develop a new self-adaptation or meta-learning technique

(Schaul and Schmidhuber, 2010a), called adaptation sampling that can auto-

matically adapt the settings in a principled and economical way.

We model this situation as follows: Let πθ be a distribution with hyper-

parameter θ and ψ(z) a quality measure for each sample z ∼ πθ. Our goal is to

adapt θ such as to maximize the quality ψ. A straightforward method to achieve

this, henceforth dubbed adaptation sampling, is to evaluate the quality of the

samples z
′ drawn from πθ′ , where θ′ 6= θ is a slight variation of θ, and then

perform hill-climbing: Continue with the new θ′ if the quality of its samples

is significantly better (according, e.g., to a Mann-Whitney U-test), and revert

to θ otherwise. Note that this proceeding is similar to the NES algorithm

itself, but applied at a meta-level to algorithm parameters instead of the search

distribution. The goal of this adaptation is to maximize the pace of progress

over time, which is slightly different from maximizing the fitness function itself.

Virtual adaptation sampling is a lightweight alternative to adaptation sam-

pling that is particularly useful whenever evaluating ψ is expensive :

• do importance sampling on the existing samples zi, according to πθ′ :

w′
i =

π(z|θ′)
π(z|θ)

(this is always well-defined, because z ∼ πθ ⇒ π(z|θ) > 0).

• compare {ψ(zi)} with weights {wi = 1, ∀i} and {ψ′ = ψ(zi), ∀i} with

weights {w′
i}, using a weighted version of the Mann-Whitney test, as in-

troduced in Appendix A.

Beyond determining whether θ or θ′ is better, choosing a non-trivial confidence

level ρ allows us to avoid parameter drift, as θ is only updated if the improvement

is significant enough.

There is one caveat, however: the rate of parameter change needs to be ad-

justed such that the two resulting distributions are not too similar (otherwise

24

the difference won’t be statistically significant), but also not too different, (oth-

erwise the weights w′ will be too small and again the test will be inconclusive).

If, however, we explicitly desire large adaptation steps on θ, we have the

possibility of interpolating between adaptation sampling and virtual adaptation

sampling by drawing a few new samples from the distribution πθ′ (each assigned

weight 1), where it is overlapping least with πθ. The best way of achieving

this is importance mixing, as introduced in Section 2.4.3, uses jointly with the

reweighted existing samples.

For NES algorithms, the most important parameter to be adapted by adap-

tation sampling is the learning rate η, starting with a conservative guess. This is

because half-way into the search, after a local attractor has been singled out, it

may well pay off to increase the learning rate in order to more quickly converge

to it.

In order to produce variations η′ which can be judged using the above-

mentioned U-test, we propose a procedure similar in spirit to Rprop-updates

(Igel and Husken, 2003; Riedmiller and Braun, 1993), where the learning rates

are either increased or decreased by a multiplicative constant whenever there is

evidence that such a change will lead to better samples.

More concretely, when using adaptation sampling for NES we test for an

improvement with the hypothetical distribution θ′ generated with η′ = 1.5η.

Each time the statistical test is successful with a confidence of at least ρ =
1
2 − 1

3(d+1) (this value was determined empirically) we increase the learning rate

by a factor of c+ = 1.1, up to at most η = 1. Otherwise we bring it closer to its

initial value: η ← 0.9η + 0.1ηinit.

Figure 2.4 illustrates the effect of the virtual adaptation sampling strategy on

two different 10-dimensional unimodal benchmark functions, the Sphere func-

tion f1 and the Rosenbrock function f8 (see section 2.7.2 for details). We find

that, indeed, adaptation sampling boosts the learning rates to the appropriate

high values when quick progress can be made (in the presence of an approxi-

mately quadratic optimum), but keeps them at carefully low values otherwise.

2.4.5 Restart Strategies

A simple but widespread method for mitigating the risk of finding only local op-

tima in a strongly multi-modal scenario is to restart the optimization algorithm

a number of times with different initializations, or just with a different random

seed. This is even more useful in the presence of parallel processing resources,

in which case multiple runs are executed simultaneously.

In practice, where the parallel capacity is limited, we need to decide when to

stop or suspend an ongoing optimization run and start or resume another one.

In this section we provide one such restart strategy that takes those decisions.

Inspired by recent work on practical universal search (Schaul and Schmidhuber,

2010b), this results in an effective use of resources independently of the problem.

25

(a) 10-dimensional sphere (easy)

(b) 10-dimensional Rosenbrock (hard)

Figure 2.4: Illustration of the effect of adaptation sampling. We show the
increase in fitness during a NES run (above) and the corresponding learning rates
(below) on two setups: 10-dimensional sphere function (a), and 10-dimensional Rosen-
brock function (b). Plotted are three variants of xNES (algorithm 5): fixed default
learning rate of η = 0.1 (dashed, red) fixed large learning rate of η = 0.5 (dotted, yel-
low), and an adaptive learning rate starting at η = 0.1 (green). (a) We see that for the
(simple) Sphere function, it is advantageous to use a large learning rate, and adapta-
tion sampling automatically finds that one. However, using the overly greedy updates
of a large learning rate fails on harder problems (b). Here adaptation sampling really
shines: it boosts the learning rate in the initial phase (entering the Rosenbrock valley),
then quickly reduces it while the search needs to carefully navigate the bottom of the
valley, and boosts it again at the end when it has located the optimum and merely
needs to zoom in precisely.

26

103 104 105

Number of evaluations

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 s

u
cc

e
ss

 r
a
te

xNES on BBOB f18

p=1

p= 1

2

p= 1

10

Figure 2.5: Illustrating the effect of different restart strategies. Plotted is the cumu-
lative empirical success probability, as a function of the total number of evaluations
used. Using no restarts, corresponding to p = 1 (green) is initially faster but unreliable,
whereas p = 1

10
(dotted black) reliably finds the optimum within 300000 evaluations,

but at the cost of slowing down success for all runs by a factor 10. In-between these
extremes, p = 1

2
(broken line, red) trades off slowdown and reliability.

The strategy consists in reserving a fixed fraction p of the total time for

the first run, and then subdividing the remaining time 1 − p in the same way,

recursively (i.e. p(1 − p)i−1 for the ith run). The recursive decomposition of

the time budget stops when the assigned time-slice becomes smaller than the

overhead of swapping out different runs. In this way, the number of runs with

different seeds remains finite, but increases over time, as needed. Figure 2.5

illustrates the effect of the restart strategy, for different values of p, on the

example of a multi-modal benchmark function f18 (see section 2.7.2 for details),

where most runs get caught in local optima. Whenever used in the rest of the

chapter, the fraction is p = 1
5 .

Let s(t) be the success probability of the underlying search algorithm at

time t. Here, time is measured by the number of generations or fitness evalu-

ations. Accordingly, let Sp(t) be the boosted success probability of the restart

scheme with parameter p. Approximately, that is, assuming continuous time,

the probabilities are connected by the formula

Sp(t) = 1−
∞∏

i=1

[
1− s

(
p(1− p)i−1t

)]
.

Two qualitative properties of the restart strategy can be deduced from this

formula, even if in discrete time the sum is finite (i ≤ log2(t)), and the times

p(1− p)i−1t need to be rounded:

• If there exists t0 such that s(t0) > 0 then lim
t→∞

Sp(t) = 1 for all p ∈ (0, 1).

27

• For sufficiently small t, we have Sp(t) ≤ sp(t).

This captures the expected effect that the restart strategy results in an initial

slowdown, but eventually solves the problem reliably.

2.5 Techniques for Multinormal

Distributions

In this section we will describe two crucial techniques to enhance performance of

the NES algorithm as applied to multinormal distributions. First, the method

of exponential parameterization is introduced, guaranteeing that the covari-

ance matrix stays positive-definite. Second, a novel method for changing the

coordinate system into a “natural” one is laid out, making the algorithm com-

putationally efficient.

2.5.1 Using Exponential Parameterization

Gradient steps on the covariance matrix Σ result in a number of technical

problems. When updating Σ directly with the gradient step ∇ΣJ , we have

to ensure that Σ + η∇ΣJ remains a valid, positive definite covariance matrix.

This is not guaranteed a priori, because the (natural) gradient ∇ΣJ may be

any symmetric matrix. If we instead update a factor A of Σ, it is at least

ensured that A>
A is symmetric and positive semi-definite. But when shrinking

an eigenvalue of A it may happen that the gradient step swaps the sign of the

eigenvalue, resulting in undesired oscillations.

An elegant way to fix these problems is to represent the covariance matrix

using the exponential map for symmetric matrices (see e.g., Glasmachers and

Igel, 2005 for a related approach). Let

Sd :=
{
M ∈ Rd×d

∣∣∣M> = M

}

and

Pd :=
{
M ∈ Sd

∣∣∣v>
Mv > 0 for all v ∈ Rd \ {0}

}

denote the vector space of symmetric and the (cone) manifold of symmetric

positive definite matrices, respectively. Then the exponential map

exp : Sd → Pd , M 7→
∞∑

n=0

M
n

n!
(2.10)

is a diffeomorphism: The map is bijective, and both exp as well as its inverse

map log : Pd → Sd are smooth. The mapping can be computed in cubic time,

for example by decomposing the matrix M = UDU
> into orthogonal U (eigen-

vectors) and diagonal D (eigen-values), taking the exponential of D (which

28

Pd

Σ exp

Sd Pd

M

Σ

Figure 2.6: Left: updating a covariance matrix Σ directly can end up outside the
manifold of symmetric positive-definite matrices Pd. Right: first performing the
update on M = 1

2
log(Σ) in Sd and then mapping back the result into the original

space Pd using the exponential map is both safe (guaranteed to stay in the manifold)
and straight (the update follows a geodesic).

amounts to taking the element-wise exponentials of the diagonal entries), and

composing everything back2 as exp(M) = U exp(D)U>.

Thus, we can represent the covariance matrix Σ ∈ Pd as exp(M) with

M ∈ Sd. The resulting gradient update for M has two important proper-

ties: First, because Sd is a vector space, any update automatically corresponds

to a valid covariance matrix.3 Second, the update of M makes the gradient

invariant w.r.t. linear transformations of the search space Rd. This follows from

an information geometric perspective, viewing Pd as the Riemannian parame-

ter manifold equipped with the Fisher information metric. The property is a

direct consequence of the Cartan-Hadamard theorem (Cartan, 1928). See also

Figure 2.6 for an illustration.

However, the exponential parameterization considerably complicates the com-

putation of the Fisher information matrix F, which now involves partial deriva-

tives of the matrix exponential (2.10). This can be done in cubic time per partial

derivative according to Najfeld and Havel (1994), resulting in an unacceptable

complexity of O(d7) for the computation of the Fisher matrix.

2.5.2 Using Natural Coordinates

In this section we describe a technique that allows us to avoid the computation of

the Fisher information matrix altogether, for some specific but common classes

of distributions. The idea is to iteratively change the coordinate system in such

a way that it becomes possible to follow the natural gradient without any costly

inverses of the Fisher matrix (actually, without even constructing it explicitly).

We introduce the technique for the simplest case of multinormal search distri-

butions, and in section 2.6.2, we generalize it to the whole class of distributions

that they are applicable to (namely, rotationally-symmetric distributions).

2The same computation works for the logarithm, and thus also for powers Pd → Pd,
M 7→ M

c = exp(c · log(M)) for all c ∈ R, for example for the (unique) square root (c = 1/2).
3The tangent bundle TPd of the manifold Pd is isomorphic to Pd ×Sd and globally trivial.

Thus, arbitrarily large gradient steps are meaningful in this representation.

29

Instead of using the ‘global’ coordinates Σ = exp(M) for the covariance

matrix, we linearly transform the coordinate system in each iteration to a coor-

dinate system in which the current search distribution is the standard normal

distribution with zero mean and unit covariance. Let the current search distri-

bution be given by (µ,A) ∈ Rd×Pd with A
>
A = Σ. We use the tangent space

T(µ,A)(R
d×Pd) of the parameter manifold Rd×Pd, which is isomorphic to the

vector space Rd × Sd, to represent the updated search distribution as

(δ, M) 7→ (µnew, Anew) =

(
µ+A

>δ, A exp

(
1

2
M

))
. (2.11)

This coordinate system is natural in the sense that the Fisher matrix w.r.t. an

orthonormal basis of (δ,M) is the identity matrix. The current search distribu-

tion N (µ,A>
A) is encoded as

π(z|δ,M) = N
(
µ+A

>δ, A> exp(M)A
)
,

where at each step we change the coordinates such that (δ,M) = (0, 0). In this

case, it is guaranteed that for the variables (δ,M) the plain gradient and the

natural gradient coincide (F = I). Consequently the computation of the natural

gradient costs O(d3) operations.

In the new coordinate system we produce standard normal samples s ∼
N (0, I) which are then mapped back into the original coordinates z = µ+A

> ·s.
The log-density becomes

log π(z | δ,M) =− d

2
log(2π)− log

(
det(A)

)
− 1

2
tr(M)

− 1

2

∥∥∥ exp
(
−1

2
M

)
A

−> · (z− (µ+A
>δ))

∥∥∥
2

,

and thus the log-derivatives (at δ = 0, M = 0) take the following, surprisingly

simple forms:

∇
δ
|
δ=0

log π(z |M = 0, δ) = ∇
δ
|
δ=0

[
−1

2

∥∥∥A−> · (z− (µ+A
>δ))

∥∥∥
2
]

= −1

2

[
−2 ·A−>

A
> ·A−> · (z− (µ+A

>δ))
] ∣∣∣

δ=0

= A
−>(z− µ)

= s (2.12)

30

∇
M
|
M=0

log π(z | δ = 0,M) = −1

2
∇

M
|
M=0

[
tr(M) +

∥∥∥ exp
(
−1

2
M

)
A

−>(z− µ)
∥∥∥
2
]

= −1

2

[
I+ 2 ·

(
−1

2

)
· [A−>(z− µ)]

· exp
(
−1

2
M

)
· [A−>(z − µ)]>

]∣∣∣∣∣
M=0

= −1

2

[
I− [A−>(z− µ)] · I · [A−>(z − µ)]>

]

=
1

2
(ss> − I) (2.13)

These results give us the updates in the natural coordinate system

∇δJ =
λ∑

k=1

f(zk) · sk (2.14)

∇MJ =

λ∑

k=1

f(zk) · (sks>k − I) (2.15)

which are then mapped back onto (µ,A) using equation (2.11):

µnew ← µ+A
>δ = µ+ ηA>∇δJ

= µ+ ηA>

(
1

λ

λ∑

k=1

∇δ log π (zk|θ) · f(zk)
)

= µ+
η

λ
A

>

(
λ∑

k=1

f(zk) · sk
)

Anew ← A · exp
(
1

2
M

)
= A · exp

(
η
1

2
∇MJ

)

= A · exp
(
η

2
· 1
λ

λ∑

k=1

∇M log π (zk|θ) · f(zk)
)

= A · exp
(
η

4λ

λ∑

k=1

f(zk) · (sks>k − I)

)

2.5.3 Orthogonal Decomposition of Multinormal

Parameter Space

We decompose the parameter vector space (δ,M) ∈ Rd × Sd into the product

Rd × Sd = Rd︸︷︷︸
(δ)

× S‖d︸︷︷︸
(σ)

× S⊥d︸︷︷︸
(B)

,

of orthogonal subspaces. The one-dimensional space S‖d = {λ · I |λ ∈ R} is

spanned by the identity matrix I, and S⊥d = {M ∈ Sd | tr(M) = 0} de-

31

notes its orthogonal complement in Sd. The different components have roles

with clear interpretations: The (δ)-component ∇δJ describes the update of

the center of the search distribution, the (σ)-component with value ∇σJ · I
for ∇σJ = tr(∇MJ)/d has the role of a step size update, which becomes

clear from the identity det(exp(M)) = exp(tr(M)), and the (B)-component

∇BJ = ∇MJ − ∇σJ describes the update of the transformation matrix, nor-

malized to unit determinant, which can thus be attributed to the shape of the

search distribution. This decomposition is canonical in being the finest decom-

position such that updates of its components result in of the search algorithm

under linear transformations of the search space.

On these subspaces we introduce independent learning rates ηδ, ησ, and ηB,

respectively. For simplicity we also split the transformation matrix A = σ ·B
into the step size σ ∈ R+ and the normalized transformation matrix B with

det(B) = 1. Then the resulting update is

µnew = µ+ ηδ · ∇δJ = µ+ ηδ ·
λ∑

k=1

f(zk) · sk (2.16)

σnew = σ · exp
(ησ
2
· ∇σ

)
= σ · exp

(
ησ
2
· tr(∇MJ)

d

)
(2.17)

Bnew = B · exp
(ηB

2
· ∇BJ

)
= B · exp

(
ηB
2
·
(
∇MJ − tr(∇MJ)

d
· I
))

,

(2.18)

with ∇MJ from equation (2.15). In case of ησ = ηB, in this case referred to as

ηA, the updates (2.17) and (2.18) simplify to

Anew = A · exp
(ηA

2
· ∇M

)
(2.19)

= A · exp
(
ηA
2
·
λ∑

k=1

f(zk) · (sks>k − I)

)
.

The resulting algorithm is called exponential NES (xNES), and shown in Al-

gorithm 5. We also give the pseudocode for its hill-climber variant (see also

section 2.5.5).

Updating the search distribution in the natural coordinate system is an

alternative to the exponential parameterization (section 2.5.1) for making the

algorithm invariant under linear transformations of the search space, which is

then achieved in a direct and constructive way.

2.5.4 Connection to CMA-ES

It has been noticed independently by Glasmachers et al. (2010a) and Akimoto

et al. (2010) that the natural gradient updates of xNES and the strategy up-

dates of the CMA-ES algorithm (Hansen and Ostermeier, 2001) are closely con-

nected. However, since xNES does not feature evolution paths, this connection

32

Algorithm 5: Exponential Natural Evolution Strategies (xNES), for
multinormal distributions
input: f , µinit, Σinit = A

>
A

1 initialize
σ ← d

√
| det(A)|

B← A/σ

2 repeat

3 for k = 1 . . . λ do

4 draw sample sk ∼ N (0, I)

5 zk ← µ+ σB>
sk

6 evaluate the fitness f(zk)
7 end

8 sort {(sk, zk)} with respect to f(zk) and compute utilities uk

9 compute gradients

∇δJ ←
∑λ
k=1 uk · sk ∇MJ ←∑λ

k=1 uk · (sks>k − I)
∇σJ ← tr(∇MJ)/d ∇BJ ← ∇MJ −∇σJ · I

10 update parameters
µ← µ+ ηδ · σB · ∇δJ
σ ← σ · exp(ησ/2 · ∇σJ)
B← B · exp(ηB/2 · ∇BJ)

11 until stopping criterion is met

is restricted to the so-called rank-µ-update (in the terminology of this study,

rank-λ-update) of CMA-ES.

First of all observe that xNES and CMA-ES share the same invariance prop-

erties. But more interestingly, although derived from different heuristics, their

updates turn out to be nearly equivalent. A closer investigation of this equiva-

lence promises synergies and new perspectives on the working principles of both

algorithms. In particular, this insight shows that CMA-ES can be explained

as a natural gradient algorithm, which may allow for a more thorough analysis

of its updates, and xNES can profit from CMA-ES’s mature settings of algo-

rithms parameters, such as search space dimension-dependent population sizes,

learning rates and utility values.

Both xNES and CMA-ES parameterize the search distribution with three

functionally different parameters for mean, scale, and shape of the distribution.

xNES uses the parameters µ, σ, and B, while the covariance matrix is repre-

sented as σ2 · C in CMA-ES, where C can by any positive definite symmetric

matrix. Thus, the representation of the scale of the search distribution is shared

among σ and C in CMA-ES, and the role of the additional parameter σ is to

allow for an adaptation of the step size on a faster time scale than the full co-

variance update. In contrast, the NES updates of scale and shape parameters

σ and B are properly decoupled.

Let us start with the updates of the center parameter µ. The update (2.16)

is very similar to the update of the center of the search distribution in CMA-ES,

see (Hansen and Ostermeier, 2001). The utility function exactly takes the role

33

of the weights in CMA-ES, which assumes a fixed learning rate of one. For the

covariance matrix, the situation is more complicated. From equation (2.19) we

deduce the update rule

Σnew =(Anew)
> ·Anew

=A
> · exp

(
ηΣ ·

λ∑

k=1

uk
(
sks

>
k − I

)
)
·A

for the covariance matrix, with learning rate ηΣ = ηA. This term is closely con-

nected to the exponential parameterization of the natural coordinates in xNES,

while CMA-ES is formulated in global linear coordinates. The connection of

these updates can be shown either by applying the xNES update directly to the

natural coordinates without the exponential parameterization, or by approxi-

mating the exponential map by its first order Taylor expansion. Akimoto et al.

(2010) established the same connection directly in coordinates based on the

Cholesky decomposition of Σ, see (Sun et al., 2009a,b). The arguably simplest

derivation of the equivalence relies on the invariance of the natural gradient

under coordinate transformations, which allows us to perform the computation,

without loss of generality, in natural coordinates. We use the first order Taylor

approximation of exp to obtain

exp

(
ηΣ ·

λ∑

k=1

uk
(
sks

>
k − I

)
)
≈ I+ ηΣ ·

λ∑

k=1

uk
(
sks

>
k − I

)
,

so the first order approximate update yields

Σ
′
new =A

> ·
(
I+ ηΣ ·

λ∑

k=1

uk
(
sks

>
k − I

)
)
·A

=(1− U · ηΣ) ·A>
A+ ηΣ ·

λ∑

k=1

uk
(
A

>
sk

) (
A

>
sk

)>

=(1− U · ηΣ) ·Σ+ ηΣ ·
λ∑

k=1

uk (zk − µ) (zk − µ)
>

with U =
∑λ

k=1 uk, from which the connection to the CMA-ES rank-µ-update

is obvious (see Hansen and Ostermeier, 2001). Finally, the updates of the global

step size parameter σ turn out to be identical in xNES and CMA-ES without

evolution paths.

Having highlighted the similarities, let us have a closer look at the differences

between xNES and CMA-ES, which are mostly two aspects. CMA-ES uses the

well-established technique of evolution paths to smoothen out random effects

over multiple generations. This technique is particularly valuable when working

with minimal population sizes, which is the default for both algorithms. Thus,

evolution paths are expected to improve stability; further interpretations have

34

been provided by Hansen and Ostermeier (2001). However, the presence of

evolution paths has the conceptual disadvantage that the state of the CMA-ES

algorithms is not completely described by its search distribution. The other

difference between xNES and CMA-ES is the exponential parameterization of

the updates in xNES, which results in a multiplicative update equation for the

covariance matrix, in contrast to the additive update of CMA-ES. We argue that

just like for the global step size σ, the multiplicative update of the covariance

matrix is natural.

A valuable perspective offered by the natural gradient updates in xNES is

the derivation of the updates of the center µ, the step size σ, and the normalized

transformation matrix B, all from the same principle of natural gradient ascent.

In contrast, the updates applied in CMA-ES result from different heuristics for

each parameter. Hence, it is even more surprising that the two algorithms

are closely connected. This connection provides a post-hoc justification of the

various heuristics employed by CMA-ES, and it highlights the consistency of

the intuition behind these heuristics.

2.5.5 Elitism

The principle of the NES algorithm is to follow the natural gradient of expected

fitness. This requires sampling the fitness gradient. Naturally, this amounts

to what, within the realm of evolution strategies, is generally referred to as

“comma-selection”, that is, updating the search distribution based solely on

the current batch of “offspring” samples, disregarding older samples such as

the “parent” population. This seems to exclude approaches that retain some

of the best samples, like elitism, hill-climbing, or even steady-state selection

(Goldberg, 1989). In this section we show that elitism (and thus a wide variety of

selection schemes) is indeed compatible with NES. We exemplify this technique

by deriving a NES algorithm with (1+1) selection, i.e., a hill-climber.

It is impossible to estimate any information about the fitness gradient from

a single sample, since at least two samples are required to estimate even a

finite difference. The (1+1) selection scheme indicates that this dilemma can be

resolved by considering two distinguished samples, namely the elitist or parent

z
parent = µ, and the offspring z. Considering these two samples in the update is

in principle sufficient for estimating the fitness gradient w.r.t. the parameters θ.

Care needs to be taken for setting the algorithm parameters, such as learning

rates and utility values. The extremely small population size of one indicates

that learning rates should generally be small in order to ensure stability of the

algorithm. Another guideline is the well known observation (Rechenberg and

Eigen, 1973) that a step size resulting in a success rate of roughly 1/5 maximizes

progress. This indicates that a self-adaptation strategy should increase the

learning rate in case of too many successes, and decrease it when observing too

few successes.

35

Let us consider the basic case of radial Gaussian search distributions

π(z |µ, σ) = 1√
2πσ

exp

(‖z− µ‖2
2σ2

)

with parameters µ ∈ Rd and σ > 0. We encode these parameters as θ = (µ, `)

with ` = log(σ). Let s ∼ N (0, 1) be a standard normally distributed vector,

then we obtain the offspring as z = µ + σ · s ∼ N (µ, σ2), and the natural

gradient components are

∇̃µJ = u
(µ)
1 · 0+ u

(µ)
2 · σ · s

∇̃`J = u
(`)
1 · (−1) + u

(`)
2 · (‖s‖2 − 1).

The corresponding strategy parameter updates read

µ← µ+ ηµ ·
[
u
(µ)
1 · 0+ u

(µ)
2 · σ · s

]

σ ← σ · exp
(
η` ·

[
u
(`)
1 · (−1) + u

(`)
2 · (‖s‖2 − 1)

])
.

The indices 1 and 2 of the utility values refer to the ‘samples’ µ and z, namely

parent and offspring. Note that these samples correspond to the vectors 0 and

s in the above update equations (see also section 2.5.2). The superscripts of the

utility values indicate the different parameters. Now elitist selection and the

1/5 rule dictate the settings of these utility values as follows:

• The elitist rule requires that the mean remains unchanged in case of no

success (u(µ)
1 = 1 and u

(µ)
2 = 0), and that the new sample replaces the

mean in case of success (u(µ)
1 = 0 and u

(µ)
2 = 1, with a learning rate of

ηµ = 1).

• Setting the utilities for ` to u(`)1 = 1 and u
(`)
2 = 0 in case of no success,

effectively reduces the learning rate. Setting u
(`)
1 = −5 and u

(`)
2 = 0 in

case of success has the opposite effect and roughly implements the 1/5-

rule. The self-adaptation process can be stabilized with a small learning

rate η`.

Note that we change the utility values based on success or failure of the offspring.

This seems natural, since the utility of information encoded in the sample z

depends on its success. Highlighting elitism in the selection, we call these utility

values success-based. This is similar but not equivalent to rank-based utilities

for the joint population {µ, z}.
The NES hill-climber for radial Gaussian search distributions is illustrated

in algorithm 6. This formulation offers a more standard perspective on the hill-

climber by using explicit case distinctions for success and failure of the offspring

instead of success-based utilities. The same procedure can be generalized to

more flexible search distributions. A conservative strategy is to update further

shape-related parameters only in case of success, which can be expressed by

36

means of success-based utility values in the very same way. The corresponding

algorithm for multi-variate Gaussian search distributions is Algorithm 7 (in

section 2.5.2) and for multi-variate Cauchy it is Algorithm 9 (in section 2.6.3).

Algorithm 6: (1+1)-NES: radial Gaussian distribution

input: f , µinit, σinit
1 fbest ← f(µinit)
2 repeat

3 draw sample s ∼ N (0, 1)
4 create offspring z← µ+ σ · s
5 evaluate the fitness f(z)
6 if f(z) > fbest then

7 update mean µ← z

8 σ ← σ · exp(5ησ)
9 fbest ← f(z)

10 else

11 σ ← σ · exp(−ησ)
12 end

13 until stopping criterion is met ;

Algorithm 7: (1+1)-xNES: multi-variate Gaussian distribution

input: f , µinit, Σinit = A
>
A

1 fmax ← −∞
2 repeat

3 draw sample s ∼ N (0, I)

4 evaluate the fitness f(z = A
>
s+ µ)

5 calculate log-derivatives ∇M log π (z|θ) = 1
2

(
ss

> − I
)

6 (z1, z2)← (µ, z)
7 if fmax < f(z) then

8 fmax ← f(z)
9 u← (−4, 1)

10 update mean µ← z

11 else

12 u← (45 , 0)
13 end

14 ∇MJ ← 1
2

∑2
k=1∇M log π (zk|θ) · uk = −u1

2 I+ u2

4

(
ss

> − I
)

15 A← A · exp
(
1
2η∇MJ

)

16 until stopping criterion is met

Use for Multi-objective NES

Using the hill-climber version as an ingredient, we can follow the successful

scheme developed in (Igel et al., 2007) to design multi-objective NES algorithm

(MO-NES). It maintains a population of (1+1)-NES hill-climbers, with the goal

of maximally approximating the Pareto-front. Each generation, the k ∈ N hill-

climbers generate one offspring each. As in multi-objective optimization there

37

is no unique notion of success due to multiple contradicting objectives, the

selection scheme of the individual hill-climbers becomes meaningless. Instead,

we adopt the indicator-based selection scheme used in (Igel et al., 2007) which

consists of two stages. Parents and offspring are merged into a single population

and ranked according to (1) the dominance relation, and (2) an indicator that

permits aggregating the relative value of each individual within its front into a

single number (in contrast to the m-dimensional fitness vector), for example the

hypervolume contribution (Zitzler and Thiele, 1998). Selection then amounts

to keeping the best k out of 2k individuals according to this two-tiered ranking.

The resulting MO-NES algorithm is constructed by replacing the (1+1)-CMA-

ES module from MO-CMA-ES (Igel et al., 2007) with a NES hill-climber, usually

(1+1)-xNES (see Glasmachers et al., 2010a for details).

2.6 Beyond Multinormal Distributions

In the previous section we have seen how natural gradient ascent is applied to

multi-variate normal distributions, which arguably constitute the most impor-

tant class of search distributions in modern evolution strategies. In this section

we expand the NES framework in breadth, motivating the usefulness and deriv-

ing a number of NES variants with different search distributions.

2.6.1 Separable NES

Adapting the full covariance matrix of the search distribution can be disadvan-

tageous, particularly in high-dimensional search spaces, for two reasons.

For many problems it can be safely assumed that the computational costs

are governed by the number of fitness evaluations. This is particularly true if

such evaluations rely on expensive simulations. However, for applications where

fitness evaluations scale gracefully with the search space dimension, the O(d3)
xNES update (due to the matrix exponential) can dominate the computation4.

One such application is the evolutionary training of recurrent neural networks

(i.e., neuro-evolution), where the number of weights d in the network can grow

quadratically with the number of neurons k, resulting in a complexity of O(k6)
for a single NES update.

A second reason not to adapt the full covariance matrix in high dimensional

search spaces is sample efficiency. The covariance matrix has d(d + 1)/2 ∈
O(d2) degrees of freedom, which can be huge in large dimensions. Obtaining a

stable estimate of this matrix based on samples may thus require many (costly)

fitness evaluations, in turn requiring very small learning rates. As a result, the

algorithm may simply not have enough time to adapt its search distribution to

the problem with a given budget of fitness evaluations. In this case, it may be

4 Even if we sacrifice the exponential parameterization (which leads to other problems, see
section 2.5.1) to perform more efficient updates, a cost of O(d2) is unavoidable, already for
sampling offspring.

38

advantageous to restrict the class of search distributions in order to adapt at

all, even if this results in a less steep learning curve in the (then practically

irrelevant) limit of infinitely many fitness evaluations.

The only two distinguished parameter subsets of a multi-variate distribution

that do not impose the choice of a particular coordinate system onto our search

space are the ‘size’ σ of the distribution, corresponding to the (2d)-th root of the

determinant of the covariance matrix, and its orthogonal complement, the co-

variance matrix normalized to constant determinant B (see section 2.5.3). The

first of these candidates results in a standard evolution strategy without covari-

ance adaptation at all, which may indeed be a viable option in some applications,

but is often too inflexible. The set of normalized covariance matrices, on the

other hand, is not interesting because it is clear that the size of the distribution

needs to be adjusted in order to ensure convergence to an optimum.

Thus, it has been proposed to give up some invariance properties of the

search algorithm, and to adapt the class of search distribution with diagonal

covariance matrices in some predetermined coordinate system (Ros and Hansen,

2008). Such a choice is justified in many applications where a certain degree

of independence can be assumed among the fitness function parameters. It

has even been shown by Ros and Hansen (2008) that this approach can work

surprisingly well even for highly non-separable fitness functions.

Restricting the class of search distributions to Gaussians with diagonal co-

variance matrix corresponds to restricting a general class of multi-variate search

distributions to separable distributions

p(z | θ) =
d∏

i=1

p̃(zi | θi) ,

where p̃ is a family of densities on the reals, and θ = (θ1, . . . , θd) collects the

parameters of all of these distributions. In most cases these parameters amount

to θi = (µi,σi), where µi ∈ R is a position and σi ∈ R+ is a scale parameter

(i.e., mean and standard deviation, if they exist), such that zi = µi + σi · si ∼
p̃(· |µi,σi) for si ∼ p̃(· | 0, 1).

Obviously, this allows us to sample new offspring in O(d) time (per sam-

ple). Since the adaptation of each component’s parameters is independent, the

strategy update step also takes only O(d) time.

Thus, the sacrifice of invariance, amounting to the selection of a distinguished

coordinate system, allows for a linear time algorithm (per individual), which

still maintains a reasonable amount of flexibility in the search distribution, and

allows for a considerably faster adaptation of its parameters. The resulting NES

variant, called separable NES (SNES), is illustrated in algorithm 8 for Gaussian

search distributions. Note that each of the steps requires only O(d) operations.

Later in this section we extend this algorithm to other search distributions,

without affecting its computational complexity.

39

Algorithm 8: Separable NES (SNES)

input: f , µinit, σinit
1 repeat

2 for k = 1 . . . λ do

3 draw sample sk ∼ N (0, I)
4 zk ← µ+ σsk
5 evaluate the fitness f(zk)
6 end

7 sort {(sk, zk)} with respect to f(zk) and compute utilities uk

8 compute gradients
∇µJ ←

∑λ
k=1 uk · sk

∇σJ ←
∑λ
k=1 uk · (s2k − 1)

9 update parameters
µ← µ+ ηµ · σ · ∇µJ
σ ← σ · exp(ησ/2 · ∇σJ)

10 until stopping criterion is met ;

2.6.2 Rotationally-symmetric Distributions

The class of radial or rotationally-symmetric search distributions are distribu-

tions with the property p(x) = p(Ux), for all x ∈ Rd and all orthogonal matrices

U ∈ Rd×d. Let Qτ (z) be a family of densities of a rotationally symmetric proba-

bility distributions in Rd with parameter τ . Thus, we can write Qτ (z) = qτ (r
2)

with r2 = ‖z‖2 for some family of functions qτ : R≥0 → R≥0. In the following

we consider classes of search distributions with densities

π
(
z
∣∣µ,A, τ

)
=

1

det(A)
· qτ
(
‖
(
A

−1
)>

(z− µ)‖2
)

with additional transformation parameters µ ∈ Rd and invertible A ∈ Rd×d.

The function qτ is the accordingly transformed density of the variable s =(
A

−1
)>

(z−µ). This setting is rather general. It covers many important families

of distributions and their multi-variate forms, such as multi-variate Gaussians.

In addition, parameters of the radial distribution, most prominently its tail

(controlling whether large mutations are common or rare) can be controlled

with the parameter τ .

We apply the procedure presented in section 2.5.2 to this more general case.

In local exponential coordinates

(δ,M) 7→ (µnew,Anew) =

(
µ+A

>δ,A exp

(
1

2
M

))

we obtain the three components of log-derivatives

∇δ,M,τ |δ=0,M=0
log π (z |µ,A, τ , δ,M) = (gδ, gM, gτ) ,

40

gδ =− 2 · q
′
τ (‖s‖2)
qτ (‖s‖2)

· s

gM =− 1

2
I− q′τ (‖s‖2)

qτ (‖s‖2)
· ss>

gτ =
1

qτ (‖s‖2)
· ∇τ qτ (‖s‖2)

where q′τ = ∂
∂(r2)qτ denotes the derivative of qτ with respect to r2, and ∇τ qτ

denotes the gradient w.r.t. τ .

In the special case of Gaussian search distributions, q does not depend on a

parameter τ and we have

q(r2) =
1

(2π)d/2
· exp

(
−1

2
r2
)

q′(r2) =− 1

2
· 1

(2π)d/2
· exp

(
−1

2
r2
)

= −1

2
· q(r2) ,

resulting in gδ = s and gM = 1
2 (ss

>− I), recovering equations (2.12) and (2.13).

Sampling from Radial Distributions

In order to use this class of distributions for search we need to be able to

draw samples from it. The central idea is to first draw a sample s from the

‘standard’ density π(s |µ = 0,A = I, τ), which is then transformed into the

sample z = A
>
s + µ, corresponding to the density π(z |A,µ, τ). In general,

sampling s can be decomposed into sampling the (squared) radius component

r2 = ‖z‖2 and a unit vector v ∈ Rd, ‖v‖ = 1. The squared radius has the

density

q̃τ (r
2) =

∫

‖z‖2=r2

Qτ (z) dz =
2πd/2

Γ(d/2)
· (r2)(d−1)/2 · qτ (r2) ,

where Γ(·) denotes the gamma function. In the following we assume that we

have an efficient method of drawing samples from this one-dimensional density.

Besides the radius we draw a unit vector v ∈ Rd uniformly at random, for

example by normalizing a standard normally distributed vector. Then s = r · v
is effectively sampled from π(s |µ = 0,A = I, τ), and the composition z =

rA>
v + µ follows the density π(z |µ,A, τ). In many special cases, however,

there are more efficient ways of sampling s = r · v directly.

Computing the Fisher Information Matrix

In section 2.5.2 the natural gradient coincides with the plain gradient, because

coordinate system is constructed in such a way that the Fisher information

matrix for the parameters (δ,M) is the identity. However, this is in general not

possible in the presence of parameters τ , typically controlling the radial shape,

and in particular the tail, of the search distribution.

41

Consider the case τ ∈ Rd
′

. The dimensions of δ and M are d and d(d+1)/2,

respectively, making for a total number ofm = d(d+3)/2+d′ parameters. Thus,

the Fisher information matrix is an (m×m) matrix of the form

F =

(
I v

v> c

)

with

v =
∂2 log π(z)

∂(δ,M)∂τ
∈ R(m−d′)×d′ , c =

∂2 log π(z)

∂τ 2
∈ Rd

′×d′ .

Using the Woodbury identity, we compute the inverse of the Fisher matrix as

F
−1 =

(
I v

v> c

)−1

=

(
I+Hvv> −Hv
−Hv> H

)

with H = (c− v>v)−1, and exploiting H> = H . The natural gradient becomes

F
−1 · g =

(
(gδ, gM)−Hv(v>(gδ, gM)− gτ)

H(v>(gδ, gM)− gτ)

)
,

which can be computed efficiently in only O(d′3 +md′) operations. Assuming

that d′ does not grow with d, this complexity corresponds to O(d2) operations

in terms of the search space dimension, compared to O(d6) operations required

for a naive inversion of the full Fisher matrix. In other words, the benefits of

the natural coordinate system carry over, even if we no longer have F = I.

2.6.3 Heavy-tailed NES

Natural gradient ascent and plain gradient ascent in natural coordinates pro-

vide two equivalent views on the working principle of NES. In this section we

introduce yet another interpretation, with the goal of extending NES to heavy-

tailed distributions, in particular distributions with infinite variance, like the

Cauchy distribution. The problem posed by these distributions within the NES

framework is that they do not induce a Riemannian structure on the parameter

space of the distribution via their Fisher information, which renders the in-

formation geometric interpretation of natural coordinates and natural gradient

ascent invalid.

Many important types of search distributions have strong invariance proper-

ties, e.g., multi-variate and heavy-tailed distributions. In this still very general

case, the NES principle can be derived solely based on invariance properties,

without ever referring to information geometric concepts.

The direction of the gradient ∇θJ(θ) depends on the inner product 〈·, ·〉 in

use, corresponding to the choice of a coordinate system or an (orthonormal)

set of basis vectors. Thus, expressing a gradient ascent algorithm in arbitrary

42

coordinates results in (to some extent) arbitrary and often sub-optimal updates.

NES resolves this dilemma by relying on the natural gradient, which corresponds

to the distinguished coordinate system (of the tangent space of the family of

search distributions) corresponding to the Fisher information metric.

The natural coordinates of a multi-variate Gaussian search distribution turn

out to be those local coordinates w.r.t. which the current search distribution has

zero mean and unit covariance. This coincides with the coordinate system in

which the invariance properties of multi-variate Gaussians are most apparent.

This connection turns out to be quite general. In the following we exploit this

property systematically and apply it to distributions with infinite (undefined)

Fisher information.

Groups of Invariances

The invariances of a search distribution can be expressed by a group G of (affine)

linear transformations. Typically, G is a sub-group of the group of orthogonal

transformations (i.e., rotations) w.r.t. a local coordinate system. For the above

example of a rotationally-symmetric density Q : Rd → R+
0 (e.g., a Gaussian),

the densities

π(z |µ,A) =
1

det(A)
·Q
(
A

−1(z− µ)
)

with µ ∈ Rd and A ∈ Rd×d, det(A) 6= 0 form the corresponding multi-

variate distribution. Let G(µ,A) be the group of invariances of π(z |µ,A),

that is, G(µ,A) =
{
g
∣∣π(g(z) |µ,A) = π(z |µ,A)∀z ∈ Rd

}
. We have G(0,I) =

O〈·,·〉(R
d) =

{
g
∣∣ 〈g(z), g(z′)〉 = 〈z, z′〉 ∀z, z′ ∈ Rd

}
, where the right hand side

is the group of orthogonal transformations w.r.t. an inner product, defined as

the (affine) linear transformations that leave the inner product (and thus the

properties induced by the orthonormal coordinate system) invariant. Here the

inner product is the one w.r.t. which the density Q is rotation invariant. For

general (µ,A) we have G(µ,A) = h ◦ G(0,I) ◦ h−1, where h(z) = Az + µ is the

affine linear transformation corresponding to the current search distribution.

In general, the group of invariances is only a subgroup of an orthogonal group,

e.g., for a separable distribution Q, G is the finite group generated by coordinate

permutations and axis flips.

We argue that it is most natural to rely on a gradient or coordinate system

which is compatible with the invariance properties of the search distribution in

use. In other words, we should ensure the compatibility condition

G(µ,A) ⊂ O〈·,·〉(R
d)

for the inner product 〈·, ·〉 with respect to which we compute the gradient ∇J .

This condition has a straight-forward connection to the natural coordinate sys-

tem introduced in section 2.5.2: It is fulfilled by performing all updates in local

43

coordinates, in which the current search distribution is expressed by the density

π(· | 0, I) = Q(·). In these coordinates, the distribution is already rotationally

symmetric by construction (or similar for separable distributions), where the

rotational symmetry is defined in terms of the ‘standard’ inner product of the

local coordinates. Local coordinates save us from the cumbersome explicit con-

struction of an inner product that is left invariant by the group G(µ,A).

Note, however, that Q(z) and Q(σ · z) have the same invariance properties.

Thus, the invariance properties make only the gradient components ∇µJ and

∇BJ unique, but not the scale component ∇σJ . Luckily this does not affect the

(1+1) hill-climber variant of NES, which relies on a success-based step size adap-

tation rule (see section 2.5.5). Also note that this derivation of the NES updates

works only for families of search distributions with strong invariance properties,

while natural gradient ascent extends to much more general distributions, such

as mixtures of Gaussians.

Cauchy Distribution

Given these results, NES, formulated in local coordinates, can be used with

heavy-tailed search distributions without modification. This applies in particu-

lar to the (1+1) hill-climber, which is the most attractive choice for heavy-tailed

search distributions, because when the search distribution converges to a local

optimum and a better optimum is located by a mutation, then averaging this

step over the offspring population will usually result in a sub-optimal step that

stays within the same basin of attraction. In contrast, a hill-climber can jump

straight into the better basin of attraction, and can thus make better use the

specific advantages of heavy-tailed search distributions.

Of course, the computation of the plain gradient changes depending on the

distribution in use. Once this gradient is computed in the local coordinate

system respecting the invariances of the current search distribution, it can be

used for updating the search parameters µ and B without further corrections

like multiplying with the (in general undefined) inverse Fisher matrix. For the

multi-variate Cauchy distribution we have

q(s) =
Γ((d + 1)/2)

π(d+1)/2
· (‖s‖2 + 1)−(d+1)/2 ,

which results in the gradient components

∇δJ =
d+ 1

‖s‖2 + 1
· s

∇MJ =
d+ 1

2 · (‖s‖2 + 1)
· ss> − 1

2
· I .

The full NES hill-climber with multi-variate Cauchy mutations is provided in

algorithm 9.

44

Algorithm 9: (1+1)-NES with multi-variate Cauchy distribution

input: f , µinit, Σinit = A
>
A

1 fbest ← −∞
2 repeat

3 draw sample
s ∼ N (0, I)
r ∼ πCauchy(0, 1)
z ← rA>

s+ µ

4 evaluate the fitness f(z)
5 (s1, s2)← (0, s)
6 (z1, z2)← (µ, z)

7 if f(z) > fbest then

8 update mean µ← z

9 fbest ← f(z)
10 u← (−4, 1)
11 else

12 u← (45 , 0)
13 end

14 calculate log-derivatives ∇M log π (zk|θ)←
1

2

(
d+ 1

r2 + 1
sks

>
k − I

)

15 ∇MJ ← 1
2

∑2
k=1∇M log π (zk|θ) · uk

16 A← A · exp
(
1
2ηA∇MJ

)

17 until stopping criterion is met ;

2.7 Experiments

In this section, we empirically validate the new algorithms, with the goal of

answering the following questions:

• How do NES algorithms perform compared to state-of-the-art evolution

strategies?

• Can we identify specific strengths and limitations of the different variants,

such as SNES (designed for separable problems) and Cauchy-NES (with

heavy-tailed distribution)?

• Going beyond standardized benchmarks, should natural evolution strate-

gies be applied to real-world problems?

We conduct a broad series of experiments on standard benchmarks, as well

as more specific experiments testing special capabilities. In total, six different

algorithm variants are tested and their behaviors compared qualitatively as well

as quantitatively, w.r.t. different modalities.

We start by detailing and justifying the choices of hyperparameters, then we

proceed to evaluate the performance of a number of different variants of NES

(with and without the importance mixing and adaptation sampling techniques)

on a broad collection of benchmarks. We further conduct experiments using

the separable variant on high-dimensional problems, and address the question

of global optimization and to what degree a heavy-tailed search distribution

45

(namely multivariate Cauchy) can alleviate the problem of getting stuck in local

optima.

2.7.1 Experimental Setup and Hyperparameters

Across all NES variants, we distinguish three hyperparameters: the population

size λ, the learning rates η and the utility function u (because we always use

fitness shaping, see section 2.4.1). In particular, for the multivariate Gaussian

case (xNES) we have the three learning rates ηµ, ησ, and ηB.

It is highly desirable to have good default settings that scale with the prob-

lem dimension and lead to robust performance on a broad class of benchmark

functions. Table 2.1 provides such default values as functions of the problem di-

mension d for xNES. We borrowed several of the settings from CMA-ES (Hansen

and Ostermeier, 2001), which seems natural due to the apparent similarity dis-

cussed in section 2.5.4. Both the population size λ and the learning rate ηµ are

the same as for CMA-ES, even if this learning rate never explicitly appears in

CMA-ES. For the utility function we copied the weighting scheme of CMA-ES,

but we shifted the values such that they sum to zero, which is the simplest

form of implementing a fitness baseline; Jastrebski and Arnold (2006) proposed

a similar approach for CMA-ES. The remaining parameters were determined

via an empirical investigation, aiming for robust performance. In addition, in

the separable case (SNES) the number of parameters in the covariance matrix

is reduced from d(d+1)/2 ∈ O(d2) to d ∈ O(d), which allows us to increase the

learning rate ησ by a factor of d/3 ∈ O(d), a choice which has proven robust in

practice (Ros and Hansen, 2008).

Table 2.1: Default parameter values for xNES and SNES (including the utility func-
tion) as a function of problem dimension d.

parameter default value

λ 4 + b3 log(d)c
ηµ 1

ησ = ηB
3(3 + log(d))

5d
√
d

ησ
3 + log(d)

5
√
d

uk
max

(
0, log(λ2 + 1)− log(i)

)
∑λ
j=1 max

(
0, log(λ2 + 1)− log(j)

) − 1

λ

The six algorithm variants that we will be evaluating below are xNES (algo-

rithm 5), its hill-climber variant (1+1)-xNES (see algorithm 7), “xNES-im-as”,

which is xNES using both importance mixing (section 2.4.3) and adaptation

sampling (section 2.4.4), the separable SNES (as in algorithm 8), its own hill-

climber variant (1+1)-SNES (pseudocode not shown), and finally the heavy-

46

2 4 8 16 32 64 128 256 512
Dimension

10-4

10-3

10-2

10-1

100

T
im

e
 p

e
r

e
v
a
lu

a
ti

o
n
 [

s]

xNES
SNES

Figure 2.7: Computation time per function evaluation, for two representative algo-
rithms, on problem dimensions ranging from 2 to 512. SNES scales linearly, whereas
the cost grows cubically for xNES.

tailed variant (1+1)-NES-Cauchy (as in algorithm 9).

Figure 2.7 shows a comparison plot for the runtime of the two groups of

algorithms, xNES with cubic runtime and the linear-cost SNES5. Note that the

computation time is given per function evaluation. A Python implementation

of all these is available within the open-source machine learning library PyBrain

(see appendix A).

2.7.2 Black-box Optimization Benchmarks

For a practitioner it is important to understand how NES algorithms compare

to other methods on a wide range black-box optimization scenarios. Thus, we

evaluate our algorithm on all the benchmark functions of the ‘Black-Box Opti-

mization Benchmarking’ collection (BBOB) from the 2010 GECCO Workshop

for Real-Parameter Optimization. The collection consists of 24 noise-free func-

tions (12 unimodal, 12 multi-modal; Hansen and Finck, 2010a) and 30 noisy

functions (Hansen and Finck, 2010b). In order to make our results fully com-

parable, we also use the identical setup (Hansen and Auger, 2010), which trans-

forms the pure benchmark functions to make the parameters non-separable (for

some) and avoid trivial optima at the origin. To facilitate the comparison for the

reader without overcrowding the plots, we provide the GECCO 2010 results of

(1,4)-CMA-ES alongside our own (chosen as the most comparable representative

among the 13 CMA-ES-based submissions to the workshop).

On all of these benchmarks, we compare xNES (as described in Algorithm 5)

and xNES-im-as, that is, the same algorithm but augmented with both impor-

5The reference machine has an Intel Core i7 processor with 1.6GHz and 4GB of RAM.

47

tance mixing and adaptation sampling. On the multi-modal, as well as the noisy

benchmarks, we also use restart strategies (see section 2.4.5).

For the unimodal benchmarks (see Figure 2.8), we plot how the performance

of xNES scales with problem dimension (between 2 and 40). Shown are the

median number of evaluations required to reach a fitness of −10−7. We find

that xNES is on par with CMA-ES for most benchmarks, but generally more

robust (e.g., on the StepEllipsoid benchmark). Employing importance mixing

and adaptation sampling further increases performance (most significantly on

the simple benchmarks like the Sphere function), but at the cost of robustness.

For the multi-modal benchmarks (see Figure 2.9), as well as the noisy bench-

marks (see Figures 2.10 and 2.11), where not all runs succeed, we instead show

the cumulative success rates (again, for reaching a fitness of −10−7), for prob-

lem dimension d = 5. We find that xNES together with our restart strategies

lead to very good performance, clearly outperforming CMA-ES on almost all

multi-modal functions, and many noisy functions. For xNES-im-as, the results

correspond to the expected trade-off that these techniques improve performance,

with a substantial boost on the noise-free multi-modal functions, but reduce ro-

bustness, as is evident from the results on many of the harder noisy benchmarks

(only attenuated in part by the restart strategy).

2.7.3 Separable NES

The SNES algorithm is expected to perform at least as well as xNES on sep-

arable problems, while it should show considerably worse performance in the

presence of highly dependent variables. We first present a number of exper-

iments on standard benchmarks with the aim of understanding its behavior

and in particular its limitations in more detail. Furthermore, the algorithm

is specifically designed to scale gracefully to high-dimensional search problems.

We thus apply SNES to two tasks with a scalable and considerably high search

space dimension, namely neuro-evolutionary controller design, and the problem

of finding low energy states in Lennard-Jones potentials.

Separable and Non-separable Benchmarks

First, we evaluate SNES on a subset of the unimodal benchmark problems from

the BBOB framework (Hansen and Auger, 2010; Hansen and Finck, 2010a).

These benchmarks test the capability of SNES to descend quickly into local

optima, a key property of most evolution strategies. The results in Figure 2.12

show how SNES dominates when the function is separable (f1 through f6), and

converges much slower than xNES in non-separable benchmarks, as expected.

In particular, on the rotated ellipsoid function f10, which is designed to make

separable methods fail, SNES requires 4 orders of magnitude more evaluations.

In dimensions d > 2 it fails completely because the resolution of double precision

numbers is insufficient for this task.

48

102

103

104

105

f1 Sphere f2 Ellipsoid f5 Linear

CMA(1,4)
xNES
xNES-im-as

102

103

104

105

f6 AttractiveSector f7 StepEllipsoid f8 Rosenbrock

102

103

104

105

f9 Rot(Rosenbrock) f10 Rot(Ellipsoid) f11 Tablet

2 3 5 10 20 40
Dimension

102

103

104

105

N
u
m

b
e
r

o
f

e
v
a
lu

a
ti

o
n
s f12 Cigar

2 3 5 10 20 40

f13 SharpRidge

2 3 5 10 20 40

f14 DiffPowers

Figure 2.8: Unimodal benchmarks. Log-log plot of the median number of fitness
evaluations (over 100 trials) required to reach the target fitness value of −10−7 for the
12 unimodal benchmark functions on dimensions 2 to 40. Disconnected (smaller) plot
markers denote cases where the corresponding algorithm converged prematurely in at
least 50% of the runs (cases for which 90% or more prematurely converged are not
shown at all). No data was available for (1,4)-CMA-ES on dimension 40. Note that
xNES (red triangles) consistently solves all benchmarks, with a scaling factor that is
almost the same over all functions. Also, xNES appears to be more stable, especially
on the SharpRidge function. When employing importance mixing and adaptation
sampling (xNES-im-as, green squares), performance increases, most substantially on
the Sphere function, while robustness decreases.

49

0.0

0.2

0.4

0.6

0.8

1.0
f3 f4 f15

0.0

0.2

0.4

0.6

0.8

1.0
f16 f17 f18

0.0

0.2

0.4

0.6

0.8

1.0
f19 f20 f21

103 104 105

Number of evaluations

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 s

u
cc

e
ss

 r
a
te f22

103 104 105

f23

103 104 105

f24
xNES
xNES-im-as
CMA(1,4)

Figure 2.9: Multi-modal benchmarks, comparing the performance of xNES with
restart strategies (dashed red) and (1,4)-CMA-ES (dotted black). Shown is the empir-
ical cumulative success rate (over 100 runs, 15 for CMA-ES). Note that xNES clearly
outperforms CMA-ES on all functions except f21 and f22 (both of which are simply
combinations of 101 and 21 Gaussian peaks, respectively, without any global struc-
ture), where the results are very similar. When additionally employing importance
mixing and adaptation sampling (xNES-im-as, solid green), performance improves
even further.

50

0.0

0.2

0.4

0.6

0.8

1.0

Gaussian-Noise
f101

0.0

0.2

0.4

0.6

0.8

1.0
f104

0.0

0.2

0.4

0.6

0.8

1.0
f107

103 104 105

Number of evaluations

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 s

u
cc

e
ss

 r
a
te f110

xNES
xNES-im-as
CMA(1,4)

Uniform-Noise
f102

f105

f108

103 104 105

f111

S
p
h
e
re

m
o
d
e
ra

te

Cauchy-Noise
f103

R
o
se

n
b
ro

ck
m

o
d
e
ra

te

f106

S
p
h
e
re

se
v
e
re

f109

103 104 105

R
o
se

n
b
ro

ck
se

v
e
re

f112

Figure 2.10: Noisy benchmarks, comparing the performance of xNES with restart
strategies (dashed red), and (1,4)-CMA-ES (dotted black). Shown is the empirical
cumulative success rate (over 100 runs, 15 for CMA-ES). The benchmarks are grouped
by type of noise (vertical) and underlying function (horizontal). Generally speaking,
Cauchy-noise is the least harmful, as the rare outliers do not affect the ranks all that
much. We find that xNES outperforms CMA-ES on the majority of the functions.
Additionally employing importance mixing and adaptation sampling (xNES-im-as,
solid green), however, improves performance only on some of the functions. Continued
in Figure 2.11.

51

0.0

0.2

0.4

0.6

0.8

1.0

Gaussian-Noise
f113

0.0

0.2

0.4

0.6

0.8

1.0
f116

103 104 105

Number of evaluations

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 s

u
cc

e
ss

 r
a
te f119

xNES
xNES-im-as
CMA(1,4)

Uniform-Noise
f114

f117

103 104 105

f120

S
te

p
-E

llip
so

id

Cauchy-Noise
f115

E
llip

so
id

f118

103 104 105

D
iffe

re
n
t

p
o
w

e
rs

f121

0.0

0.2

0.4

0.6

0.8

1.0

Gaussian-Noise
f122

0.0

0.2

0.4

0.6

0.8

1.0
f125

103 104 105

Number of evaluations

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 s

u
cc

e
ss

 r
a
te f128

xNES
xNES-im-as
CMA(1,4)

Uniform-Noise
f123

f126

103 104 105

f129

S
ch

a
ffe

rsF7

Cauchy-Noise
f124

G
rie

w
a
n
k-

R
o
se

n
b
ro

ck

f127

103 104 105

G
a
lla

g
h
e
r-

G
a
u
ss1

0
1
M

e

f130

Figure 2.11: Noisy benchmarks (continued from Figure 2.10).

52

2 4 8 16
Dimension

102

103

104

105

106

N
u
m

b
e
r

o
f

e
v
a
lu

a
ti

o
n
s

f1 Sphere

2 4 8 16

f2 Ellipsoid

2 4 8 16

f5 Linear

2 4 8 16

f6 AttractiveSector

2 4 8 16

f7 StepEllipsoid

2 4 8 16

f8 Rosenbrock

2 4 8 16

f10 Rot(Ellipsoid)

Figure 2.12: Comparison of the performance of xNES (red circles) and SNES (blue
triangles) on a subset of the unimodal BBOB benchmark functions. The log-log plots
show the median number of evaluations required to reach the target fitness 10−7,
for problem dimensions ranging from 2 to 16 (over 20 runs). The first 4 benchmark
functions are separable, the other three are not. The inverted triangles indicate cases
where SNES converged to the optimum in less than 90% of the runs.

Neuro-evolution

In the second experiment, we show how SNES is well-suited for neuro-evolution

problems because they tend to be high-dimensional, multi-modal, but with

highly redundant global optima (there is not a unique set of weights that defines

the optimal behavior). In particular, we run it on Non-Markovian double-pole

balancing, a task which involves balancing two differently sized poles hinged on

a cart that moves on a finite track. The single control consists of the force F

applied to the cart, and observations include the cart’s position and the poles’

angles, but no velocity information, which makes this task partially observable.

It provides a perfect testbed for algorithms focusing on learning fine control with

memory in continuous state and action spaces (Wieland, 1991). The controller

is represented by a simple recurrent neural network, with three inputs, (position

x and the two poles’ angles β1 and β2), and a variable number n of tanh units in

the output layer, which are fully connected (recurrently), resulting in a total of

n(n+ 3) weights to be optimized. The activation of the first of these recurrent

neurons directly determines the force to be applied. We use the implementation

found in PyBrain (see appendix A).

An evaluation is considered a success if the poles do not fall over for 100, 000

time-steps. We experimented with recurrent layers of sizes n = 1 to n = 32

(corresponding to between 4 and 1120 weights). It turns out that a single

recurrent neuron is sufficient to solve the task (Figure 2.13, left). In fact, both

the xNES and SNES results are state-of-the-art, outperforming the previously

best algorithm (CoSyNE; Gomez et al., 2008, with a median of 410 evaluations)

by a factor two.

In practical scenarios however, we cannot know the best network size a pri-

ori, and thus the prudent choice consists in overestimating the required size.

An algorithm that graciously scales with problem dimension is therefore highly

desirable, and we find (Figure 2.13, right) that SNES is exhibiting precisely that

behavior. The fact that SNES outperforms xNES with increasing dimension,

53

102 103

Number of evaluations

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 s

u
cc

e
ss

 r
a
te

Number of weights: 4

SNES
xNES
xNES-im-as

101 102 103

Number of weights

102

103

104

105

M
e
d
ia

n
 n

u
m

b
e
r

o
f

e
v
a
lu

a
ti

o
n
s

CoSyNE
SNES
xNES
xNES-im-as

1 2 4 8 16 32
Number of hidden neurons

Figure 2.13: Left: Plotted are the cumulative success rates on the non-Markovian
double-pole balancing task after a certain number of evaluations, empirically deter-
mined over 100 runs for each algorithm, using a single tanh-unit (n = 1) (i.e., optimiz-
ing 4 weights). We find that all three algorithm variants give state-of-the-art results,
with a slightly faster but less robust performance for xNES with importance mixing
and adaptation sampling. Right: Median number of evaluations required to solve
the same task, but with increasing number of neurons (and corresponding number of
weights). We limited the runtime to one hour per run, which explains why no results
are available for xNES on higher dimensions (cubic time complexity). The fact that
SNES quickly outperforms xNES, also in number of function evaluations, indicates
that the benchmark is (sufficiently close to) separable, and it is unnecessary to use
the full covariance matrix. For reference we also plot the corresponding results of the
previously best performing algorithm CoSyNE (Gomez et al., 2008).

also in number of function evaluations, indicates that the benchmark is sepa-

rable, and it is unnecessary to use the full covariance matrix. We conjecture

that this a property shared with the majority of neuro-evolution problems that

have enough weights to exhibit redundant global optima (some of which can be

found without considering all parameter covariances).

Lennard-Jones Potentials

In our third benchmark, we show the performance of SNES on the widely stud-

ied problem of minimizing the Lennard-Jones atom cluster potentials, which

is known for being extremely multi-modal (Wales and Doye, 1998). For that

reason we employ the separable hill-climber variant (1+1)-SNES. The objective

consists in finding that configuration of N atoms which minimizes the potential

energy function

ELJ ∝
∑

i,j≤N

[(
1

rij

)12

−
(

1

rij

)6
]
,

where rij is the distance between atoms i and j (see also Figure 2.14 for an

illustration). For the setup here, we initialized µ near 0 and the step-sizes at

σi = 0.01 to avoid jumping into a local optimum in the fist generation. The

results are plotted in Figure 2.15, showing how SNES scales convincingly to

hundreds of parameters (each run up to 500d function evaluations).

54

Figure 2.14: Illustration of the best configuration found for 13 atoms (symmetric,
left), and 22 atoms (asymmetric, right).

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66

Num ber of Atom s

 350

 300

 250

 200

 150

 100

 50

0

E
L

J

5 7 9 11 13

 50

 40

 30

 20

 10

0

-

-

-

-

-

-

-

-

-

-

-

-

Figure 2.15: Performance of (1+1)-SNES on the Lennard-Jones benchmark for atom
clusters ranging from 3 to 67 atoms (corresponding to problem dimensions d of 9 to
201). The yellow diamonds indicate the best known configurations (taken from (Wales
and Doye, 1998)), and the box-plots show upper and lower quartile performance (the
red line being the median) of SNES, over 100 runs. The inset is a zoom on the
behavior in small dimensions, where SNES succeeds in locating the true optimum in
a large fraction of the runs.

55

2.7.4 Heavy Tails and Global Optimization

Can NES algorithms with heavy-tailed distributions enhance the capability of

escaping local optima? Our tests with the extremely heavy-tailed Cauchy dis-

tribution investigate the handling of multi-modality.

The first benchmark function is

f2Rosen(z) = min

{
f8(−z− 10), 5 + f8

(
z− 10

4

)}
,

where f8 is the well-known Rosenbrock function (Hansen and Finck, 2010a), and

the transformation (z − 10)/4 is component-wise. Our variant has a deceptive

double-funnel structure, with a large valley containing a local optimum and a

smaller but deeper valley containing the global optimum. The global structure

will tend to guide the search towards the local optimum (see also Figure 2.16,

left, for an illustration). For this experiment, the search distribution is initialized

at mid-distance between the two optima, and the initial step-size σ is varied.

Figure 2.16(right) shows the proportion of runs that converge to the global

optimum, instead of the (easier to locate) local one, comparing for a multivariate

Cauchy and Gaussian (1+1)-NES.

The second experiment uses the following ‘random-basin’ benchmark func-

tion:

frb(z) = 1− 9

10
r
(⌊

z1

10

⌋
, . . . ,

⌊
zd

10

⌋)

− 1

10
r(bz1c, . . . , bzdc) ·

d∏

i=1

sin2(πzi)
1

20d

to investigate the degree to which a heavy-tailed distribution can be useful when

the objective function is highly multi-modal, but there is no global structure to

exploit. Here r : Zd → [0, 1] is a pseudo-random number generator, which ap-

proximates an i.i.d. uniformly random distribution for each tuple of integers,

while still being deterministic, i.e., each tuple evaluates to the same value each

time. In practice, we implement it as a Mersenne twister (Matsumoto and

Nishimura, 1998), seeded with the hash-value of the integers. Further, to avoid

axis-alignment, we rotate the function by multiplying with an orthonormal ran-

dom d× d matrix.

One interesting property of this function is that each unit-sized hypercube

is an “attractor” of a local optimum. Thus, while sampling points from one

hypercube, an ES will contract its search distribution, making it harder to

escape from that local optimum. Furthermore, the values of the local optima

are uniformly distributed in [0, 1], and do not provide a systematic global trend

(in contrast to the Rastrigin function). If the optimization results in a value of,

say, 0.11, then we know that only 11% of the local optima are better than this.

Figure 2.17 shows the results: not surprisingly, employing the Cauchy distri-

bution for search permits longer jumps, and thus enables the algorithm to find

56

10 0 10 20

20

0

20

10-2 10-1 100 101 102

Initial variance

0.00

0.05

0.10

0.15

0.20

P
ro

b
a
b
ili

ty
 o

f
lo

ca
ti

n
g
 g

lo
b
a
l
o
p
ti

m
u
m

(1+1)NES-Gauss
(1+1)NES-Cauchy

Figure 2.16: Left: Contour plot of the 2-dimensional Double-Rosenbrock function
f2Rosen, illustrating its deceptive double-funnel structure. The global structure leads
the search to the local optimum ((14,14), red circle), whereas the true optimum ((-
11,-11), black square) is located in the smaller valley. Right: Empirical success
probabilities (of locating the global optimum), evaluated over 200 runs, of 1000 func-
tion evaluations each, on the same benchmark, while varying the size of the initial
search distribution. The results clearly show the robustness of using a heavy-tailed
distribution.

better local optima on average. The Cauchy version outperforms the Gaussian

version by a factor of two to three, depending on the problem dimension. Note

that the improvement (for both distributions) is due the number of neighbor-

cubes increasing exponentially with dimension, thus increasing the chance that

a relatively small jump will reach a better local optimum. At the same time,

the adaptation of the step size is slowed down by the dimension-dependency

of the learning rate, which leaves the algorithm more time to explore before it

eventually converges into one of the local optima.

2.7.5 Results Summary

Our results have a number of implications. First of all, the results on the BBOB

benchmarks show that NES algorithms are competitive with the state-of-the-art

across a wide variety of black-box optimization problems.

Beyond this very general statement, we have demonstrated advantages and

limitations of specific variants, and as such established the generality and flexi-

bility of the NES framework. Experiments with heavy-tailed and separable dis-

tributions demonstrate the viability of the approach on high-dimensional and

complex, deceptively multi-modal domains. We obtained best reported results

on the difficult task of training a neural controller for double pole-balancing.

This test, together with good results on the Lennard-Jones problem, show the

feasibility of the algorithm for real-world search and optimization problems.

The multi-start strategy, although simple and non-adaptive in spirit, brings

considerable improvements on many difficult multi-modal benchmarks. Its tech-

nique of interleaving multiple runs has advantages over truly sequential restart

strategies, waiting for convergence before restarting.

57

2 4 8 16 32
Dimension

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
v
e
ra

g
e
 l
o
ca

l
o
p
ti

m
u
m

 f
o
u
n
d

(1+1)NES-Gauss
(1+1)NES-Cauchy

Figure 2.17: Left: Contour plot of (one instantiation of) the deceptive global opti-
mization benchmark function frb, in two dimensions. It is constructed to contain local
optima in unit-cube-sized spaces, whose best value is uniformly random. In addition,
it is superimposed on 10d-sized regional plateaus, also with uniformly random value.
Right: Value of the local optimum discovered on frb (averaged over 250 runs, each
with a budget of 100d function evaluations) as a function of problem dimension. Since
the locally optimal values are uniformly distributed in [0, 1], the results can equiva-
lently be interpreted as the top percentile in which the found local optimum is located.
E.g., on the 4-dimensional benchmark, NES with the Cauchy distribution tends to find
one of the 6% best local optima, whereas employing the Gaussian distribution only
leads to one of the best 22%.

In summary, our results demonstrate that it is indeed possible for an algo-

rithm with a clean derivation from first principles to achieve state-of-the-art to

best performance in the heuristics-dominated field of black-box optimization.

2.8 Discussion

Table 2.2 summarizes the various techniques we introduced. The plain search

gradient suffers from premature convergence and lack of scale invariance (see

section 2.2.2). Therefore, we use the natural gradient instead, which turns NES

into a viable optimization method. To improve performance and robustness,

we introduced several novel techniques. Fitness shaping makes the NES algo-

rithm invariant to order-preserving transformations of the fitness function, thus

increasing robustness. Importance mixing reduces the number of necessary sam-

ples to estimate the search gradient, while adaptation sampling adjusts NES’s

learning rates online. Empirically we found that using both importance mix-

ing and adaptation sampling yields highly performant results on the standard

benchmarks. In addition, restart strategies substantially improve success prob-

abilities on multi-modal functions and noisy benchmarks, clearly outperforming

alternative approaches. Lastly, the exponential parameterization is crucial for

maintaining positive-definite covariance matrices, and the use of the natural

coordinate system guarantees computational feasibility.

NES applies to general parameterizable distributions. In this chapter, we

have experimentally investigated three variants, adjusted to the particular prop-

58

Table 2.2: Summary of enhancing techniques. Note that the last two techniques are
applicable only to radial distributions.

Technique Issue addressed Section

Natural gradient Scale-invariance, many more 2.3

Fitness shaping Robustness 2.4.1

Fitness baseline Robustness 2.4.2

Importance mixing Performance, parameter sensitivity 2.4.3

Adaptation sampling Performance, parameter sensitivity 2.4.4

Restart strategies Reduced sensitivity to local optima 2.4.5

Exponential parameterization Covariance constraints 2.5.1

Natural coordinate system Efficiency 2.5.2

erties of different problem classes. We demonstrated the power of the xNES

variant using a full multinormal distribution, which is invariant under arbitrary

translations and rotations, on the canonical suite of standard benchmarks. Ad-

ditionally, we showed that the restriction of the covariance matrix to a diagonal

parameterization (SNES) allows for scaling to very high dimensions, both on

the difficult non-Markovian double-pole balancing task and the Lennard-Jones

cluster potential optimization problem. Furthermore, we demonstrated that us-

ing heavy-tailed distributions (Cauchy) instead of Gaussian distributions yields

substantial benefits in global optimization scenarios with multiple or deceptive

local optima.

Unlike many black-box optimization algorithms, NES boasts a clean deriva-

tion from first principles. The relationship of NES to methods from other fields,

notably evolution strategies (Hansen and Ostermeier, 2001) and policy gradi-

ents (Bagnell and Schneider, 2003; Kakade, 2002; Peters and Schaal, 2008),

should be evident to readers familiar with both of these domains, as it marries

the concept of fitness-based black-box optimization from evolutionary meth-

ods with the concept of Monte Carlo-based gradient estimation from the policy

gradient framework.

59

60

Chapter 3

Curiosity-driven
Optimization

To achieve great things, two things are needed:

a plan, and not quite enough time.

Leonard Bernstein

T
he principle of artificial curiosity directs exploration towards the most in-

formative or most interesting data. In this chapter, we show how it can be

used to focus on the most pertinent search points in costly black-box optimiza-

tion. We present a novel response surface method, which employs a memory-

based model to estimate the interestingness of each candidate point using Gaus-

sian process regression. For each candidate point this model estimates expected

fitness improvement, and yields a closed-form expression of expected informa-

tion gain. The algorithm continually pushes the boundary of a Pareto-front of

candidates not dominated by any other known point according to both an infor-

mation and a fitness criterion. This makes the exploration-exploitation trade-off

explicit, and permits maximally informed search point selection. We illustrate

the robustness of our approach in a number of experimental scenarios.

3.1 Artificial Curiosity

The ability to focus on novel, yet learnable patterns in observations is an essen-

tial aspect of intelligence that has led mankind to explore its surroundings, all

the way to our current understanding of the universe. When designing artificial

agents, we have exactly this vision in mind. However, if an artificial agent is

to exhibit some level of intelligence, or at least the ability to learn and adapt

quickly in its environment, then it is essential to guide this agent to experience

such patterns, a drive known as artificial curiosity (Schmidhuber, 1991, 2006,

2009). However, this approach requires a principled way to judge and rank

data, in order to drive itself towards observations exhibiting novel, yet learnable

patterns. This property is compactly captured by the subjective notion of in-

terestingness . Artificial learning agents are dependent on the interestingness of

61

their observations. A number of formalizations of interestingness exist, although

some of these have shortcomings. Our aim here is to find a formal measure of

interestingness that can be used to guide exploration in the less general case of

black-box optimization.

3.1.1 Background

Curiosity is the drive to actively explore the interesting regions in search space

that most improve the model’s predictions or explanations of what is going on in

the world. Originally introduced for reinforcement learning (Schmidhuber, 1991;

Storck et al., 1995), the curiosity framework has been used for active learning

(Deisenroth et al., 2009; Pfingsten, 2006), to explain certain patterns of human

visual attention better than previous approaches (Itti and Baldi, 2006), and to

explain concepts such as beauty, attention and creativity (Schmidhuber, 2007,

2009).

The interestingness of a new observation is the difference between the per-

formance of an adaptive model on the observation history before and after in-

cluding the new point. The goal of the active data point selection mechanism

is to maximize expected cumulative future interestingness. Various proposed

distance measures include:

• the difference in data compressibility before and after letting the learning

algorithm take the new data into account (Schmidhuber, 2007, 2009),

• the difference in mean squared prediction error on the observation history

before and after re-training with the new point (Schmidhuber, 1991, 2006),

• the Kullback-Leibler (KL) divergence between belief distributions before

and after the new observation (Storck et al., 1995).

Note that interestingness is observer-dependent and dynamic: a point that was

interesting early on can become boring over time.

3.1.2 Artificial Curiosity as a Guide for Optimization

Motivated by costly optimization (as described in section 1.2), we here aim to

define an appropriate variant of artificial curiosity that can guide the exploratory

drive of an optimization algorithm to pick the most interesting next search point,

an thus minimize the number of evaluations required.

The optimization framework is a restricted case of the RL scenario for which

artificial curiosity has been put forth, in that fitness evaluations are atemporal

(the order in which a set of points is evaluated does not affect their fitness).

This allows for a simplified measure of interestingness that only captures the

instantaneous informativeness of a search point.

Further, to permit the incorporation of a Bayesian prior, we will focus on

probabilistic models and use a particular variant of the KL-based approach

62

(Storck et al., 1995) to maximize information gain (Chaloner and Verdinelli,

1995; Cohn, 1994; Fedorov, 1972; Hwang et al., 1991; MacKay, 1992; Plutowski

et al., 1994). The KL-divergence or relative entropy between prior and posterior

(before and after seeing the new point) is invariant under any transformation of

the parameter space.

3.1.3 Formal Framework

Formally, let Yenv be the environment of interest, and ypre be our current knowl-

edge1. The information gain (interestingness) ψ (y|ypre) brought about by the

observation y is defined as

ψ (y|ypre) = D (π (Yenv|ypre; y) ‖π (Yenv|ypre))

=

∫
π (yenv|ypre; y) log

π (yenv|ypre; y)
π (yenv|ypre)

dyenv,

where π (·|·) denotes a conditional probability and D (·‖·) denotes the KL-

divergence. For a set of observations ypre, it is also useful to define the leave-

one-out (LOO) information gain for each observation yo w.r.t. the remaining

ypre\o as

ψLOO (yo) = ψ
(
yo|ypre\o

)
.

The information gain ψ (y|ypre) is defined a posteriori, meaning that it is

only defined after we see the value y. However, in most cases, we want to assess

the information gain of an observation a priori, i.e., before seeing the value.

This leads to the expected information gain of random variable Y , defined by

Ψ(Y |ypre) = E [ψ (Y |ypre)]

=

∫
π (y|ypre)

∫
π (yenv|ypre; y) log

π (yenv|ypre; y)
π (yenv|ypre)

dyenvdy

= I (Y ;Yenv|ypre) ,

which turns out to be the conditional mutual information between the observa-

tion and the environment.

3.2 Exploration/Exploitation Trade-off.

In this section, we propose a way of handling the fundamental exploration-

exploitation trade-off. To make informed data selection decisions, they are post-

poned until the entire Pareto-optimal front – with respect to both an exploration

and an exploitation objective – is known.

Exploration Objective: Information Gain. The previous section intro-

duced maximal expected information gain as a possible objective for exploration,

1We use upper case letters for random variables, and the corresponding lower case letters
for specific configurations.

63

as an instantiation of the curiosity principle. It determines the most informative

points in terms of model improvement. But, as it does not promise maximal

fitness improvement, we need a second objective.

Exploitation Objective: Expected Fitness Improvement The straight-

forward choice of objective for exploitation would be to maximize the expected

fitness. However, in optimization, there is an asymmetry in utility: solutions

that are better than the best currently found fmax largely outweigh those that

are almost as good. Thus exploitation really aims at maximizing the expected

improvement in fitness with respect to fmax. It can be shown (Jones, 2001)

that the expected improvement takes the following form:

∆(x) = σ (Y |yo) (sΦ (s) + φ (s)) ,

where

s =
fmax − E [Y |yo]

σ (Y |yo)
,

while Φ (·) and φ (·) are the cumulative distribution and density functions of

Gaussian distributions, respectively.

Combining the Objectives. Optimizing conflicting objectives necessarily

involves some form of trade-off, which is typically handled by using a weighted

sum of both objectives, where the weights are set manually, or tuned to the

problem. Combining two objectives of different scale into a single utility measure

is common practice (Chaloner and Verdinelli, 1995), but problematic (Zhang

et al., 2003), as one of the objectives can completely dominate in some regions

of the fitness landscape, while being dominated in others.

Therefore we propose turning the problem around and only deciding on the

trade-off after first having evaluated both objectives for a large set of can-

didate points. This means finding the Pareto-front of candidates that are

non-dominated w.r.t. expected improvement and expected information gain,

which can be performed by any multi-objective optimization method (see sec-

tion 1.1.5), for example the Non-dominated Sorting Genetic Algorithm version

II (NSGA-II; Deb et al., 2002) which is used in the experiments in section 3.7.

All non-dominated candidates are considered “good” solutions, and therefore

each should be assigned a non-zero probability of being chosen. Ideally, this

probability should favor candidates that stand out on the Pareto-front, in terms

of combining both objectives, but it should also be insensitive to quirks of the

algorithm that builds the front (i.e. varying candidate densities), and to any

smooth order-preserving transformation of the fitness function. In addition, it

can allow us to shift the focus from one objective to the other, e.g. exploitation

becoming more important over time.

In the absence of an optimal way of handling this decision, we opt for an

unbiased solution, which consists of choosing the next point uniformly at random

64

from the Pareto-front.

3.3 Curiosity-driven Optimization

(General Form)

Algorithm 10 combines the components described in the previous section into a

general framework for curiosity-driven optimization. In each iteration it first fits

a probabilistic model Mf to all known points X , and then uses Mf to determine

the LOO-information gain at each point. This interestingness function is then

approximated using a second model, Mψ. The Pareto-front of the candidate

points is then computed using a multi-objective optimization algorithm, each

model providing an estimate for one of the two objectives. Finally, a new point

x∗ is chosen, as described in section 3.2.

Algorithm 10: Curiosity-driven Optimization
input: fitness function f , models Mf and Mψ, initial points X

1 repeat

2 Fit Mf to X
3 for s in X do

4 ψLOO(s) = D (Mf(X)‖Mf(X−s))
5 end

6 Fit Mψ to ψLOO
7 Find a set C of non-dominated candidate points
8 maximizing information gain (estimated by Mψ) and
9 maximizing fitness (estimated by Mf)

10 Choose x∗ from C
11 X ← X ∪ {(x∗, f(x∗)}
12 until stopping criterion is met

3.4 Models of Expected Fitness and

Information Gain

The class of probabilistic models used for Mf and Mψ should be general and

flexible enough to fit multi-modal and highly non-linear fitness functions. Ide-

ally, for every unknown point, such a model should be able to (efficiently) predict

the expected value, the expected uncertainty associated with that prediction,

and provide an analytical expression for computing information gain.

One option would be to use a mixture of Gaussians on the joint parameter-

fitness function space (as in Cohn et al., 1995). However, this approach has

the drawback of being sensitive to the number of Gaussians used, as well as

giving poor interpolation in regions with few sampled points. Neural networks

are another viable option, but coming with a propensity of overfitting the scarce

data.

65

3.4.1 A Good Model Choice: Gaussian Processes

In this section we present an implementation of curiosity-driven optimization

which satisfies all the above criteria by using Gaussian processes to model the

fitness function.

Gaussian processes (GP, Rasmussen and Williams, 2006) can be seen as a

probability distribution over functions, as evaluated on an arbitrary but finite

number of points. Given a number of observations, a Gaussian process associates

a Gaussian probability distribution to the function value for each point in the

input space. Gaussian processes are capable of modeling highly complex fitness

landscapes through the use of appropriate covariance (kernel) functions, and are

commonly used for regression and function modeling (Rasmussen and Williams,

2006).

Formally, we consider the Gaussian process with zero mean and the kernel

function

k (x, x′) + σ2
nδ (x, x

′) ,

where δ (·, ·) is the Kronecker delta function. Thus, for any values y, y′ at x, x′,

E [yy′] = k (x, x′) + σ2
n. We make the assumption that the function k is smooth

and local in the sense that k (x, x′)→ 0 when |x− x′| goes to infinity.

3.4.2 Derivation of Gaussian Process Information Gain

The concept of information gain can easily be mapped onto Gaussian processes,

but previous work has failed to provide a closed form expression for efficiently

computing it for each candidate point (Krause and Guestrin, 2007). Let us

consider a collection of fixed reference points xr, and view their value Yr as

the environment of interest. Our prior knowledge ypre consists of all previously

evaluated points xo with value yo. The expected information gain of the value

Y at point x is thus defined by

Ψr (x|yo) = I (Yr;Y |yo) = H (Y |yo)−H (Y |Yr, yo) ,

whereH(·|·) is the conditional entropy. A major disadvantage of this definition is

that the expected information gain depends on the reference points xr. However,

we may consider the situation where the number of reference points goes to

infinity. By definition, π (Y |Yr, yo) is a Gaussian distribution, and

H (Y |Yr, yo) =
1

2
log 2πeσ2 (Y |Yr, yo) .

Here σ2 (Y |Yr, yo) is the predictive variance at x given by

σ2 (Y |Yr, yo) = σ2
n + k (x, x)− k (x, xro)
(
k (xro, xro) + σ2

nI
)−1

k (xro, x)

= σ2
n + σ2

e .

66

with xro = [xr , xo]. We take advantage of the fact that in GP, the predictive

variance depends only on the location of observations. In particular, σ2
e is the

variance of the predicted mean ȳ = E [Y], and

0 ≤ σ2
e = σ2 (ȳ|Yr, yo) ≤ σ2 (ȳ|Yr) = σ2

s ,

because conditioning always reduces variance for Gaussian distributions. Ac-

cording to (Rasmussen and Williams, 2006), σ2
s converges to 0 when the number

of reference points xr around x goes to infinity. This indicates that σ2
e converges

to 0 uniformly w.r.t. yo, thus σ2 (Y |Yr, yo) converges to σ2
n uniformly w.r.t. yo.

When the number of observation points is sufficiently large around any given

point x, we have

Ψr (x|yo) = H (Y |yo)−H (Y |Yr, yo)

→ 1

2
log 2πeσ2 (Y |yo)−

1

2
log 2πeσ2

n

=
1

2
log σ2 (Y |yo)−

1

2
log σ2

n.

The limit no longer depends on the reference points, thus it can be used as

an ‘objective’ measure for the expected information gain at point x:

Ψ(x|yo) =
1

2
log σ2 (Y |yo)−

1

2
log σ2

n.

The second term is constant, therefore there is a direct connection between the

expected information gain and the predictive variance given the observation,

which can be computed efficiently. Note that Seo et al. (2000) found the pre-

dictive variance to be a useful criterion for exploration, without realizing that

it is equivalent to information gain.

3.5 Curiosity-driven Optimization with

Gaussian Processes

Choosing a Gaussian process to model the fitness function significantly simplifies

the general algorithm introduced in Section 3.3. First, it allows us to compute

the expected information gain Ψ instead of the less robust LOO-information

gain. Second, the model Mψ is no longer necessary, as Ψ can be computed for

unknown points as well. The resulting algorithm (CO-GP) is shown in Algo-

rithm 11. The remainder of this section discusses some practical considerations.

Computational Complexity. The computational complexity of each itera-

tion of CO-GP is dominated by one matrix inversion of O(n3), where n is the

total number of evaluations. Building the Pareto-front consumes most of the

computation time early on, but scales with O(n2). The computational complex-

ity of Gaussian processes can be reduced e.g. by implementing them online and

67

Algorithm 11: Curiosity-driven Optimization with Gaussian processes
(CO-GP)

input: fitness function f , kernel function, initial points X
1 repeat

2 Fit a Gaussian process G to X
3 Find a set C of non-dominated candidate points x maximizing ΨG(x)

and ∆G(x)
4 Choose x∗ from C
5 X ← X ∪ {(x∗, f(x∗)}
6 Optionally optimize the kernel hyperparameters w.r.t. the marginal

likelihood
7 until stopping criterion is met

using a reduced base vector set, containing only the most informative points

(Csató and Opper, 2002). We have not implemented these yet, as computation

time was not a major concern in our experiments.

Choosing Kernel Parameters: Model Selection. Gaussian process re-

gression only gives reasonable results when the kernel hyperparameters are set

properly. Depending on how much computation time is available, the hyperpa-

rameters could be optimized periodically with respect to the marginal likelihood.

We use xNES (see chapter 2) for this purpose. Potentially, we could also em-

ploy diagnostic methods (Jones et al., 1998) to determine whether the model is

appropriate.

Informed Multi-objective Search. At each iteration, an inner multi-objective

optimization algorithm is used (in our case, NSGA-II, Deb et al., 2002). We

can make use of our available information to make this step more efficient. For

example, we initialize the search with the Pareto-front found in the previous

iteration. Furthermore, as we want the search to roughly cover the range of

known points, we adjust the scale (for step-sizes) accordingly.

3.6 Minimal Asymptotic Requirements

To demonstrate the practical viability of CO-GP, we first investigate how it

handles a number of common but problematic scenarios and then illustrate it

on a standard benchmark function. Following Rasmussen and Williams (2006),

all experiments use the common Gaussian kernel (also known as radial basis

function) with noise, which is a very robust choice in practice.

3.6.1 Reaching Optima at Arbitrary Distance

Many fitness function landscapes contain large linear regions. Specifically, if the

scale of the region covered by the initial points is too small, almost any landscape

will appear linear. An ideal algorithm should be able to exploit the linearity

68

Figure 3.1: Escaping linear regions. The plot shows the performance of CO-GP on
a linear surface (f5, see section 2.7.2), in terms of the distance from the best point found
so far to the initial point (averaged over 20 independent runs). The green (solid) and
blue (dashed) curves correspond to CO-GP with hyperparameter adaptation enabled
and disabled, respectively. We observe that the distance from the initial point (and
thus the increase in fitness) grows exponentially if the hyperparameters are adapted,
but only linearly otherwise.

of such regions. In particular, it is highly desirable to have the searched region

grow exponentially with the number of points. Note that many well-known

algorithms, such as estimation of distribution algorithms (see section 1.3), do not

have this property, and instead rely either on correct initialization or heuristics

(Bosman et al., 2008). In contrast, CO-GP does have this property, as our

results on the linear function show (see Figure 3.1).

3.6.2 Locating Optima with Arbitrary Precision

While designed primarily for multi-modal fitness landscapes, we investigated

how our approach handles simple fitness landscapes with a single optimum. The

success criterion for this case is to have the distance to the optimum decrease

exponentially with the number of points. While we cannot prove that this is the

case in general, Figure 3.2 shows that it holds for the multi-dimensional sphere

function. This indicates that CO-GP can locate optima up to a high precision,

at least whenever, locally, the fitness function is approximately quadratic.

3.6.3 Guaranteed to Find Global Optimum

Every global optimization algorithm should provide a guarantee that in the limit

its chosen points will cover the search space densely, which is the only way to

69

0 5 10 15 20 25 30
Number of evaluations

10-3

10-2

10-1

100

101

102
D

is
ta

n
ce

 t
o
 o

p
ti

m
u
m

Figure 3.2: Precisely locating optima. The plot shows the performance of CO-
GP on a unimodal, quadratic surface (f1, see section 2.7.2), in terms of the distance
from the optimum to the best point found so far (averaged over 20 independent runs).
This distance decreases exponentially with the number of points.

ensure that it will eventually find the global optimum. Optimization based on

expected improvement has been shown to have this property (Locatelli, 1997).

It turns out that if we remove the information gain objective from CO-GP, the

algorithms are equivalent. Therefore, as one extreme of the Pareto-front will

always correspond to the point maximizing expected improvement exclusively,

and that point has a non-zero probability of being chosen, CO-GP inherits the

property that it always finds the global optimum in the limit.

3.7 Proof-of-concept

The Branin function (Jones, 2001; Jones et al., 1998) is a commonly used bench-

mark for global optimization of the form:

fBranin(x1, x2) = a(x2 − bx21 + cx1 − d)2 + e(1− f) cos(x1) + e,

where the standard parameter settings are a = 1, b = 5
4π2 , c = 5

π , d = 6, e = 10,

f = 1
8π . The function has three global optima, at (−π, 12.275), (π, 2.275) and

(9.42478, 2.475), with value fBranin(x?) = 0.397887, a bounded domain and

a non-trivial structure. Figure 3.3 illustrates the behavior of CO-GP on the

Branin function over the course of a single run, starting with four points on the

boundary corners. The Gaussian process model produces a good fit of the true

function after about 30 iterations. Locating one optimum (up to a precision of

0.1) requires only 28± 8 evaluations, locating all three requires 119± 31. The

70

qualitative behavior of the algorithm is very intuitive, placing part of its search

points spaced broadly within the domain, while the other part forms clusters

of points ever closer around the optima. Although this experiment is intended

as a proof of concept, not an empirical comparison to other global optimization

algorithms, the quantitative results indicate that CO-GP is on par with the best

results reported in the literature (Jones, 2001).

3.8 Discussion

The results in sections 3.6 and 3.7 demonstrate that curiosity-driven optimiza-

tion properly handles a number of typical optimization challenges. Although

based on the general and theoretically powerful principle of artificial curiosity,

our current implementation exhibits certain weaknesses.

In particular, despite the derived closed-form expressions for the objectives,

the method’s computational cost is still high, limiting the application domain to

(relatively) costly optimization problems. On the other hand, many real-world

problems (see section 1.4) are precisely of this type. Nevertheless, in future

research we would like to extend the method such that it is possible to specify

the amount of acceptable computational effort for the selection of each data

point, and have the algorithm make the best choice under this constraint.

Another drawback of our approach is that it is greedier than the original cu-

riosity framework: it does not necessarily maximize cumulative future expected

information gain, but greedily selects the next data point that is expected to

be the immediately most interesting. More sophisticated reinforcement learning

algorithms will be necessary to maximize the expected sum of future intrinsic

rewards (each reward being proportional to the information gain of the corre-

sponding observed data).

The results bode well for applying the general template (Algorithm 10) to

related domains such as constrained or discrete optimization, or even mixed-

integer programming. One application domain where we expect curiosity-based

methods to be counter-productive, however, are problems that require mini-

mizing cumulative evaluated regret, because those tend to require risk-averse

exploration (which in practice generally translates to careful local search): here

curiosity may kill the cat.

71

early phase late phase

cost values

e
xp

e
ct

e
d

 in
fo

rm
a

ti
o

n
 g

a
in

Figure 3.3: Optimization on the Branin function. The plot in the top right
corner shows a contour plot of the Branin function with the three global optima marked
with triangles. The left column shows the estimated fitness function model (top),
and the two competing objectives, expected information gain (middle) and expected
improvement (bottom), in an early phase after 10 points (blue squares) have been
observed. The red circles are the points on the Pareto-front being considered for the
next choice. The middle column shows the same information after 30 iterations. Note
that in this later stage the model is very close to the true function (top). The plot
in the middle of the right column shows the shape of the Pareto-front corresponding
to the situation in the left column (10 points), and the plot on the bottom right
shows the values of the fitness function at all the chosen points (the initial 4 corner
points are not shown). In the early phase, the Pareto-front contains a continuum
of points in the center that trade off improvement and information gain, plus a few
isolated points with high information gain, but very low expected improvement. After
30 iterations, two of the global optima have been located precisely. The expected
improvement is zero everywhere, so the Pareto-front is collapsed to the single point
with highest information gain. CO-GP now performs a purely exploratory step, and
will continue to do so until it leads to non-zero expected improvement (e.g. around
the third optimum). On average, CO-GP requires about 120 points to locate all three
optima with high accuracy.

72

Chapter 4

A Study in Scalability

You’ve got to think about big things

while you’re doing small things,

so that all the small things

go in the right direction.

Alvin Toffler

L
earning to solve small instances of a problem should help in solving large

instances. This type of scalability is the subject of this chapter, where we

show how black-box optimization can be employed to optimize the weights of a

novel neural network architecture, which in turn results in a transfer of perfor-

mance on flexible-size board games. The networks developed (multi-dimensional

recurrent ones) exhibit a high degree of scalability, which allows them to be

trained from scratch up to the level of human beginners, without using domain

knowledge.

4.1 Scalability in Problem Size

In a wide range of domains it is possible to learn from a simple version of a

problem and then use this knowledge on a larger one. This particular form

of incremental learning is commonly employed by humans, and for machine

learning it is especially useful when training on the large version is much more

expensive.

Board games are a particularly suitable domain for investigating this form of

scalability, because for many of them either the board size can be varied, or the

rules can be trivially adjusted to make it variable. In addition, despite being

described by a small set of formal rules, they often involve highly complex

strategies. One of the most interesting board games is the ancient game of

Go, among other reasons, because computer programs are still weaker than

human players. Its extremely large search space defies traditional search-based

methods. Human experts rely heavily on patterns, and thus it is not surprising

73

that a substantial amount of research effort has been devoted to applying neural

networks – which are good at pattern recognition – to Go (Richards et al., 1997;

Wu and Baldi, 2007). Most of these methods do not scale well w.r.t. board size,

i.e. networks trained successfully on small boards (where training is efficient) do

not play well when the board is enlarged (Runarsson and Lucas, 2005; Stanley

and Miikkulainen, 2004b).

We propose a scalable approach based on Multi-dimensional Recurrent Neu-

ral Networks (MDRNNs; Graves, 2008; Graves et al., 2007) which enhances the

ability of that architecture to capture long-distance dependencies. We conduct

experiments on three different Go-inspired games, which is possible without

modifying our network architecture as it is free of domain knowledge. We train

it against opponents of varying difficulty and measure how the playing perfor-

mance scales to larger board sizes. Furthermore, we put our architecture into

context by comparing it to a number of competing ones.

4.2 Example Domain: the Game of Go

Games are a particularly interesting domain for studies of machine learning

techniques. They can usually be described by a small set of formal rules and clear

success criteria, and yet they often involve highly complex strategies. Board

games generally exhibit these features to a high degree, and so it is not surprising

that the field of machine learning has devoted major efforts to their study,

with the result that in almost all popular board games, most notably chess,

computer programs can beat all human players. Probably the most interesting

exception is the ancient game of Go, which can be solved for small boards

(van der Werf et al., 2003) but is very challenging for larger ones (Richards

et al., 1997; Runarsson and Lucas, 2005).

4.2.1 Rules of the Game

The rules of Go are simple (Iwamoto, 1972), but the strategies emerging from

them are highly complex. Players alternately place stones onto any of the un-

occupied intersections of the board (minimum size of 5x5, to 19x19 on a regular

board), with the goal of conquering maximal territory. A player can capture a

single stone or a connected group of his opponent’s stones by completely sur-

rounding them with his own stones. A move is not legal if it leads to a previously

seen board position (to avoid cycling). The game is over when both players pass.

4.2.2 Challenges of Go

Go has a very high branching factor because at any moment there are about

as many legal moves as there are free positions on the board (on average 200).

This makes using traditional search-based methods prohibitively expensive.

74

Go also exhibits a number of interesting symmetries. Apart from the four

straightforward axes of symmetry, it also has an approximate translational in-

variance, which is stronger, the further from the border a pattern is situated.

Among the practical difficulties with conducting experiments on Go are the

need to distinguish dead groups from alive and seki ones (Iwamoto, 1972), keep

track of the history of all board configurations, and the difficulty of handling

pass moves. Many other machine learning approaches to Go simplify the rules

to prevent some or all of those problems.

4.2.3 Simpler Variants of Go

A number of variations of Go, of varying degrees of similarity, are played on

the same board and share the symmetry properties of Go. The most common

ones are Irensei, Renju, Tanbo, Connect, Atari-Go, Go-Moku and Pente. We

conduct experiments on the latter three.

Atari-Go, also known as Ponnuki-Go or ‘Capture Game’, is a simplified ver-

sion of Go that is widely used for teaching the game of Go to new players because

it introduces many of the key concepts without overwhelming the novice player

with the full complexity of Go (Konidaris et al., 2002). The rules are the same

as for Go, except that passing is not allowed, and the first player to capture a

predetermined number (here: one) of their opponent’s stones wins. Compared

to Go, this variant makes playing independent of history and it simplifies deter-

mining the winner, which in turn allows for easier and faster automated playing.

It retains the concept of territory: as in the end no player may pass, each one

has to fill their own territory and therefore the player with most territory wins.

Other strategies of Go, such as building eyes, or recognizing life-and-death sit-

uations still exist in Atari-Go, but are less important. See also Figure 4.9 for

an illustration.

Go-Moku is also known as ‘Five-in-a-row’. Players alternate putting stones

onto any of the intersections on the board. The first player to have five con-

nected stones in a row, column or diagonal, wins. While trying to block off the

opponent’s lines, a player tries to keep their own lines unblocked, and poten-

tially do multiple attacks at the same time, not all of which can be countered.

These strategies, again, are heavily pattern-based (Freisleben and Luttermann,

1996).

Pente has similar rules to Go-Moku, except that it is now possible to capture

stones, in pairs, by putting stones at both ends of a pair of the opponent. The

game is won by the first player who either has five connected stones, or has

captured five pairs.

75

4.2.4 Computer Opponents

For our experiments, we have the following predefined opponents associated

with each game variant:

1. a random player, which randomly chooses any of the legal moves,

2. a naive player, which does a one-ply-deep search. If possible, it always

picks a move that makes it win the game immediately, and never picks a

move that would make it lose the game immediately. In all other cases

(the large majority), it randomly picks a legal move,

3. a publicly available heuristic player (only for Atari-Go), based on a set of

hand-coded heuristic tactics (exploited greedily, see Gherman, 2000; Grüt-

tner, 2008). Its difficulty can be adjusted by imposing that a proportion

ε of its moves are chosen randomly. According to Gherman (2000), the

level of play, with ε = 0, is ‘challenging for beginners’.

4.3 Scalable Neural Architectures

We consider a neural network architecture to be scalable if it is not tied to a

fixed input dimension. This section provides an overview of such architectures

that have been proposed for solving board games, it then describes the multi-

dimensional extensions of recurrent neural networks (RNNs) in general, and

finally gives the details of the specific instantiation we propose.

One approach to designing scalable network architectures is to scan across

the board, processing the inputs from a limited receptive field , independently of

their positions. The outputs of that stage are then fed into another architecture

that combines them (e.g. Silver et al., 2007). An extension of this idea are

the convolutional networks (Lecun and Bengio, 1995), which repeat this step

on multiple levels, thereby capturing higher-level features instead of just local

patterns. These architectures introduce a trade-off: a small receptive field limits

the kind of patterns that can be recognized, whereas a large one makes learning

very difficult (because of the exploding number of parameters).

‘Roving-eye’-based architectures (Stanley and Miikkulainen, 2004b) contain

one component with a fixed receptive field that can be aimed at any part of the

board. This is then combined with an active component that decides where to

rove over the board, and when to choose an output action.

Other architectures have been proposed (Freisleben and Luttermann, 1996;

Schraudolph et al., 1994) which make use of weight-sharing to capture domain-

specific symmetries, but these are limited to a particular game, and also re-

stricted w.r.t. what kind of strategies they can learn. Simultaneous Recurrent

Networks (Pang and Werbos, 1996) are structured like cellular automata. They

successfully incorporate the whole context and make use of symmetries, but are

not very efficient.

76

h%(i-1,j-1)

swipe start

h%(i,j)h%(i-1,j)

h%(i,j-1)

in(i,j)

out(i,j)

=

=

Figure 4.1: MDRNN for Go. The structure diagram on the left shows the con-
nections of a hidden layer in one of the swiping directions: it receives its two earlier
activations, as well as the local board input. The network as a whole takes the game
board as input (bottom right) and outputs move preferences (top right). The darker
the square, the higher the preference for the corresponding move (illegal ones are
ignored).

For the related but different problem of scaling the problem resolution, a

number of approaches for generative encodings of neural networks have been

found to be successful (e.g. Compositional Pattern Producing Networks, Gauci

and Stanley, 2007).

4.3.1 Multi-dimensional RNN

Multi-dimensional Recurrent Neural Networks (MDRNNs; Graves, 2008; Graves

et al., 2007), are an extension of bi-directional RNN proposed by Schuster and

Paliwal (1997), and a special case of the DAG-RNNs proposed by Baldi and Pol-

lastri (2003). Their unbounded receptive fields (explained below) make them

scalable by design. Successful applications include vision (Graves et al., 2007),

handwriting recognition (Graves and Schmidhuber, 2008), and supervised learn-

ing of expert Go moves (Wu and Baldi, 2007).

Unlike standard recurrent neural networks which are only effective for han-

dling sequences with a single (time-)dimension, MDRNNs are are applicable to

multi-dimensional sequences (Graves, 2008). In the case of Go, the single time

dimension is replaced by the two space dimensions of the game board.

Consider a hidden layer h↗ that swipes diagonally over the board from

bottom-left to top-right. At each board position (i, j) its activation h↗(i,j) is a

function of the current input ini,j and its own earlier activations h↗(i−1,j) and

77

h↗(i,j−1):

h↗(i,j) = gh
(
win · ini,j +wh · h↗(i−1,j) +wh · h↗(i,j−1)

)

where w␣␣ are connection weights and gh is typically the sigmoid function. On

the boundaries we use a fixed default bias value h↗(0,i) = h↗(i,0) = wb, for

0 < i ≤ n. See also Figure 4.1 for an illustration.

Because of the recurrent connections, the layer has indirect access to board

information from the whole rectangle between (0, 0) and (i, j). In order to have

access to the whole board, we use four such swiping layers, one for each of the

diagonal swiping directions in D = {↘,↗,↙,↖}. The output layer then, for

every position, combines the outputs of these four layers into a single value

outi,j (which is indirectly derived from the information of the entire input).

More formally:

outi,j = gout

(
∑

♦∈D

wout · h♦(i,j)

)

where the function gout is typically the sigmoid function.

4.3.2 Multi-dimensional LSTM

Typically a swiping layer is composed of k sigmoidal neurons (e.g. gh = tanh).

Although in theory such an MDRNN can learn to make use of the whole board

context, it is very difficult to achieve in practice, because the information is

propagated recurrently through non-linear units and thus tends to decay quickly

with distance (Hochreiter and Schmidhuber, 1997). One solution to this problem

is to use Long short-term memory cells (LSTM), which are based on protecting

the recurrent state with gating sub-units (Hochreiter and Schmidhuber, 1997).

As in (Graves, 2008; Graves et al., 2007), we therefore also use networks with

swiping layer composed of k LSTM cells, and call them MDLSTM .

4.3.3 A Custom Architecture for Go

We instantiate MDRNNs such that they are appropriately generating a playing

policy, given a symmetric game board. At each position, the network takes two

inputs which indicate the presence of a stone at this position. The first one is 1

if a stone of the network’s own color is present and 0 otherwise, the second input

encodes the presence of an opponent’s stone in the same way. A black/white

symmetric encoding, as used in other approaches (e.g. Schraudolph et al., 1994)

is not applicable here, because the output is not symmetrical: the best move

for both players might be the same.

The output value at each position expresses the network’s preference for play-

ing there (see also Figure 4.1). Assuming that a deterministic playing behavior

is desired, moves are selected greedily, randomly breaking ties. This is the case

in our experiments because the opponents act stochastically. In practice, we

78

ignore the network’s preferences for illegal moves. For stochastic play one can

interpret the preferences probabilistically, e.g. by drawing a position from the

corresponding Gibbs distribution.

MDRNNs are invariant w.r.t. stationary shifts of the input. In order to also

enforce rotation and reflection symmetry, we use the same connection weights

for all swiping directions and the same wb on all boundaries.

In our implementation we unfold the MDRNN along both spacial dimen-

sions, leading to a large but simple feed-forward network. On a normal desktop

computer (Intel Xeon 2.8 GHz), a network needs about 3ms to choose a move

on a 7x7 board, and 25ms on a 19x19 board. The total number of weights is

4k + k2 for sigmoidal swiping layers (MDRNN) and 16k + 5k2 for LSTM lay-

ers (MDLSTM). The neural network, as well as the game benchmark code is

available as part of the PyBrain library (see also Appendix A).

4.4 Experiments

As training networks is expensive, we start by empirically investigating the per-

formance of the different networks (and their parameters) with random weights.

Moreover, we determine under what circumstances the performance scales to

larger boards. We then train the networks on small boards and analyze whether

their performance improvement is transferred to larger boards. Finally, as train-

ing against a fixed opponent biases the direction of evolution towards beating

the fixed opponent, we also perform experiments with coevolution.

4.4.1 Experimental Setup

As fitness we use the average outcome of 100 games against a fixed opponent,

counting a win as 1, a draw as 0 and a loss as -1. Each player plays 50 times as

black and 50 times as white. A positive fitness therefore implies that the agent

is better on average than the opponent.

In addition to MDRNNs with sigmoidal neurons or LSTM cells (as described

in section 4.3.3), we use – as a performance baseline – standard multi-layer

perceptrons (MLP), containing a single fully connected hidden layer of size k,

with tanh units. We compare the performance of our architecture to simple

convolutional networks (CONV), with one layer of k feature maps (of identical

receptive field size ρ by ρ), no subsampling, and a sigmoid output layer that

combines the features. Here, the input board is padded with additional positions

around the borders. They have k(ρ2 + 1) + 1 parameters.

One the one hand, we analyze the performance of networks produced by

the simplest possible algorithm, namely random weight guessing (drawing from

N (0, 1)). On the other hand we train the networks using CMA-ES (Hansen and

Ostermeier, 2001) to optimize all the weights1.

1We could obviously have used xNES instead, and obtained very similar results (see sec-
tion 2.7), but at the time the research in this chapter was conducted, xNES did not yet

79

Our two quantitative measures of scalability are: a) the linear correlation

(Pearson coefficient) between the fitness on different board sizes b) the propor-

tion p of networks for which the fitness is higher on the larger board than on

the smaller one.

4.4.2 Random-weight Networks

In a first set of experiments, we determine the bias of different architectures. We

measure the performance of different kinds of networks with randomly guessed

weights, on different games and against various opponents. Figure 4.2(a) shows

the percentiles of fitness of random MDRNNs, giving an indication of the diffi-

culty of the different opponents on each game. Training is easier if initial weights

with reasonably good fitness (> 0) can be found relatively easily. This is indeed

the case for the naive and the random opponent but not for the heuristic one.

For MLPs, however, reasonable initial weights are very rare even for the naive

player, as shown in Figure 4.2(b).

In Figure 4.3, we choose one scenario (Atari-Go, naive opponent) to explic-

itly show the differences between network architectures, comparing MDRNNs,

MDLSTMs (for varying k), CONVs (for varying ρ) and MLPs. Those results,

despite corresponding to random-weight networks, already indicate that small

values of k are appropriate for MDRNNs (we will fix k = 3 hereafter), and do

not bode well for MLPs.

Table 4.1: Correlations between the fitnesses of random MDLSTMs on different board
sizes (based on 100 networks per scenario, evaluated against the naive opponent). They
are high in all cases except for Go-Moku between 5x5 and larger boards, which is due
to the fact that it is disproportionately easier for a game to end in a draw on a 5x5
board.

Sizes Atari-Go Go-Moku Pente

5x5 vs. 7x7 0.86 0.20 0.47

5x5 vs. 9x9 0.72 0.09 0.31

5x5 vs. 11x11 0.67 0.37 0.49

5x5 vs. 15x15 0.40 0.29 0.52

5x5 vs. 19x19 0.37 0.38 0.46

7x7 vs. 9x9 0.88 0.83 0.83

7x7 vs. 11x11 0.82 0.85 0.87

7x7 vs. 15x15 0.60 0.81 0.67

7x7 vs. 19x19 0.62 0.59 0.64

9x9 vs. 11x11 0.92 0.92 0.90

9x9 vs. 15x15 0.75 0.94 0.72

9x9 vs. 19x19 0.71 0.76 0.64

We determine the scalability of random networks by evaluating the fitness

on multiple board sizes and then computing their correlation (see Table 4.1).

exist.

80

�1.0 �0.5 0.0 0.5 1.0
fitness

0

20

40

60

80

100

p
e
rc
e
n
t

Atari-Go Naive
Atari-Go Random
Atari-Go Heuristic
Go-Moku Naive
Go-Moku Random
Pente Naive
Pente Random

(a) MDRNNs on different tasks.

�1.0 �0.5 0.0 0.5 1.0
fitness

0

20

40

60

80

100

p
e
rc
e
n
t

Atari-Go Naive
Atari-Go Random
Atari-Go Heuristic
Go-Moku Naive
Go-Moku Random
Pente Naive
Pente Random

(b) MLPs on different tasks.

Figure 4.2: Fitness of random networks evaluated on 7x7 (400 networks per scenario).
The percentiles show what proportion of random networks reach at least a given fitness.
For example, at least 25% or random MDRNNs win at least 75% of Go-Moku games
against the naive opponent, i.e. have a fitness > 0.5.

81

�1.0 �0.5 0.0 0.5 1.0
fitness

0

20

40

60

80

100

p
e
rc
e
n
t

CONV-3
CONV-4
CONV-5
MDLSTM-10
MDLSTM-3
MDRNN-10
MDRNN-3
MLP

Figure 4.3: Fitness of different network architectures (CONVs of varying ρ, MDRNNs
and MDLSTMs of varying k, and MLPs), when evaluated with random weights on 7x7
Atari-Go, against the naive opponent (400 networks per scenario). The percentiles
show what proportion of random networks reach at least a given fitness. MDRNNs
and MDLSTMs, each with k = 3, seem to be the most promising architectures, with
over 40% of randomly initialized networks already playing equally good as the naive
player.

As the linear correlation by itself can be a misleading measure, we provide a

visual intuition about the high correlation in Figure 4.6(a). The results indicate

that one can train networks on boards as small as 7x7 and use them to play

with similar performance on 19x19, for all three games.

4.4.3 Optimized Networks

In the second set of experiments, we train different networks against the naive

player on 7x7, using CMA-ES to optimize the weights. Figures 4.4(a), 4.4(b)

and 4.4(c) show the learning curves for Go-Muko, Pente and Atari-Go, respec-

tively. MLPs are in this comparison as a baseline, but clearly fail to learn how

to play. The other architectures learn to beat the naive opponent, with MDL-

STMs outperforming the others. Convolutional networks are learning slightly

slower, but still faster than MDRNNs.

Learning to play against the significantly stronger heuristic opponent is a

bigger challenge. Figures 4.5(a) and 4.5(b) show the learning curves against the

heuristic player, with settings ε = 0.2 and ε = 0.05 respectively (averaged over

5 runs). Here, MDLSTMs clearly outperform convolutional networks, as well as

MDRNNs, for which only the best results are shown (produced with ρ = 5)2.

We suspect that this is due to the limited receptive field: at a certain level

of play it becomes unavoidable to use non-local information. MDLSTMs can

2Increasing ρ further vastly increases the number of parameters to be optimized, which
slows down search

82

0 100 200 300 400 500
No. of evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tn

e
ss

CONV
MDLSTM
MDRNN

(a) Go-Moku

0 100 200 300 400 500
No. of evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tn

e
ss

CONV
MDLSTM
MDRNN

(b) Pente

0 100 200 300 400 500 600 700 800
No. of evaluations

�1.0

�0.5

0.0

0.5

1.0

Fi
tn

e
ss

CONV
MDLSTM
MDRNN
MLP

(c) Atari-Go.

Figure 4.4: Learning curves for different network architectures when training against
the naive opponent on the three different games (board size 7x7, averaged over 10
independent runs). The solid line corresponds to the average fitness per generation,
the broken one corresponds to the best fitness per generation. For Atari-Go, the
game is hardest to learn (c). For all three games the MDLSTMs achieve the best
performance, closely followed by CONVs. Optimizing MLPs is much harder (only
shown for Atari-Go).

83

learn how much context is necessary, and automatically increase their effective

receptive field during optimization.

The scalability results for optimized networks are summarized in Table 4.2.

Generally, there is a low correlation for the convolutional networks, but a rel-

atively high one for MDLSTMs. Figure 4.6(b) illustrates this difference for

networks trained against the naive opponent in Atari-Go. Note the large num-

ber of convolutional networks on the bottom right, for which good performance

on 7x7 corresponds to poor performance on 11x11.

Table 4.2: Scalability of networks trained on 7x7 against the naive opponent (based
on 100 networks per scenario). The correlations are higher for MDLSTMs than for
convolutional networks. Also, note the really high proportion p of MDLSTMs that are
stronger on 19x19 than on 7x7, for all games.

Game Sizes CONV MDLSTM

Correlation p Correlation p

Atari-Go 7x7 vs. 9x9 0.13 20% 0.38 48%

Atari-Go 7x7 vs. 11x11 0.17 18% 0.27 45%

Atari-Go 7x7 vs. 19x19 0.17 21% 0.38 76%

Go-Moku 7x7 vs. 9x9 0.06 42% 0.47 67%

Go-Moku 7x7 vs. 11x11 0.15 61% 0.38 87%

Go-Moku 7x7 vs. 19x19 0.04 68% 0.66 84%

Pente 7x7 vs. 9x9 0.05 45% 0.08 61%

Pente 7x7 vs. 11x11 0.24 58% 0.39 79%

Pente 7x7 vs. 19x19 0.23 58% -0.05 95%

Comparing the correlations and the proportions p to the values for random

MDLSTMs, we find the correlations to be lower but p to be higher (especially

when scaling to 19x19). This means that the fitness on a small board is not

perfectly predictive of the fitness on the large board, but it is almost always

higher on the large board. Of particular interest is the scalability of the networks

trained against the strongest opponent – as Figure 4.6(c) illustrates (for 7x7

versus 15x15), MDLSTMs achieve a high correlation (0.64), unlike convolutional

networks (0.08).

4.4.4 Coevolved Networks

Training against a fixed opponent both biases the direction of evolution and

limits performance to that of the opponent, so we decided to also perform ex-

periments with coevolution, which overcomes that limitation.

We use population-based competitive coevolution, based on the host-parasite

paradigm (as described in Lubberts and Miikkulainen, 2001). In order to pre-

serve diversity, we use the following standard enhancements (from Rosin and

Belew, 1995): shared fitness, shared sampling and hall of fame. We use a popu-

lation size of two times 15, with an elitist selection of 1
3 based on shared fitness.

At every generation, every host is evaluated against 15 opponents, 5 of them

84

0 1000 2000 3000 4000 5000
no. of evaluations

�1.0

�0.5

0.0

0.5

1.0

fi
tn

e
ss

CONV
MDLSTM
MDRNN

(a) Heuristic opponent with ε = 0.2.

0 1000 2000 3000 4000 5000
no. of evaluations

�1.0

�0.5

0.0

0.5

1.0

fi
tn

e
ss

CONV
MDLSTM
MDRNN

(b) Heuristic opponent with ε = 0.05.

Figure 4.5: Learning curves for training against heuristic opponents of different
strength, on 7x7 Atari-Go (averaged over 10 independent runs). The solid line corre-
sponds to the average fitness per generation, the broken one corresponds to the best
fitness per generation. MDLSTMs clearly outperform the other two architectures.

85

�1.0 �0.5 0.0 0.5 1.0
7x7

�1.0�0.5
0.0

0.5

1.0

1
1
x
1
1

MDLSTM
CONV

(a) Random networks, naive opponent.

	1.0 	0.5 0.0 0.5 1.0
7x7

	1.0	0.5
0.0

0.5

1.0

1
1
x
1
1

MDLSTM
CONV

(b) Optimized networks, naive opponent.

1.0
0.5 0.0 0.5 1.0
7x7

1.0
0.5
0.0

0.5

1.0

1
5
x
1
5

MDLSTM
CONV

(c) Optimized networks, heuristic opponent with ε = 0.2.

Figure 4.6: Illustrations of fitness scalability on Atari-Go. Points correspond to
MDLSTMs, crosses to convolutional networks. (a) Performance is correlated for ran-
dom networks, and often higher on 11x11 than 7x7, at least for MDLSTMs. (b) In
contrast to the large number of CONVs on the bottom right, for which good perfor-
mance on 7x7 corresponds to poor performance on 11x11, performance is correlated
for MDLSTMs. (c) Among networks trained against the heuristic player on 7x7, only
MDLSTMs achieve good results, and those results scale well to 15x15.

86

parasites (according to shared sampling), and 10 players out of the hall of fame

(which contains the player with the best relative fitness of each generation, i.e.,

the generation champions). Both populations exchange roles at each generation.

We use the implementation found in PyBrain (see appendix A).

Coevolution implies that there is no external fitness measure (as in sec-

tion 4.4.3), only a relative fitness. We compute the relative fitness of two players

as the average score over 100 games, with alternating starting players. In order

to make it more informative than pure win/lose, we compute the score for a

single game as follows:

score =





1− β M−Mmin

Mmax−Mmin
if game won

0 if draw

−1 + β M−Mmin

Mmax−Mmin
if game lost

,

with β = 0.2 being the game-length trade-off, M the number of moves done

before the game is over, Mmin the length of the shortest game and Mmax the

length of the longest game possible. Apart from smoothing the fitness landscape,

this choice favors networks that either exploit the opponents mistakes quickly,

or avoid making mistakes themselves.

Among the possible ways for tracking progress in coevolutionary runs – in

the absence of an absolute fitness – are dominance tournaments (Stanley and Mi-

ikkulainen, 2004a). In a dominance tournament, a list of dominant individuals

is maintained. The first dominant individuals is the first generation champion,

and for every other generation champion, we add it to the list if it can beat all

previous dominant individuals. The length of that list then gives us the domi-

nance number , and it is reasonable to consider that the higher that number is,

the more progress has been made. Table 4.3 shows average dominance numbers

for a number of different training scenarios.

Table 4.3: Dominance numbers for two of the games, and two different coevolutionary
setups (400 generations, averaged over 5 runs). Elitism helps, and there is more
progress for Atari-Go.

Game Parameters Dominance number

Atari-Go Non-elitist 14.8± 3

Atari-Go Elitist 27.6± 14

Go-Moku Non-elitist 11.0± 5

Go-Moku Elitist 15.6± 11

Figure 4.7 shows a typical coevolution run. The performance plotted is the

one measured against the naive player (inaccessible during coevolution). It is

interesting to note that this performance is not strictly increasing, and that

even the champions of the dominance tournament do not always correspond

to high absolute performance. Nonetheless, the high dominance numbers show

progress, which indicates that evolution based on relative fitness is producing

87

0 50 100 150 200
generation

-1.0

-0.5

0.0

0.5

1.0

fi
tn
e
s
s

pop1

dom1
pop2

dom2

Figure 4.7: A typical coevolutionary run. Plotted is the absolute fitness of the
generation champions of both populations against the naive player. The circles mark
the dominant individuals (i.e. that beat all previous dominant ones).

very different kinds of strategies than directly optimizing absolute fitness (as in

section 4.4.3).

To visualize the relative progress of the two populations during a coevo-

lutionary run, we use a CIAO plot (Cliff and Miller, 1995), which show the

performance of all generation champions of one population (horizontal axis)

playing against all of those of the other (vertical axis). If coevolution is suc-

cessful, we expect later generations to be better against earlier ones, thus to

see brighter areas in the lower left and upper right. Figure 4.8 shows a typical

CIAO plot, which exhibits this property to a small degree. However, we can

make two other, unpredicted, observations:

• the score values themselves are more extreme (i.e. the games are shorter)

with players of earlier generations and more balanced in later generations

(more grayish colors). This means that coevolution tends to lead to more

careful players, which lose late if they do, but at the cost of not being able

to win quickly against each other.

• carefully looking at individual lines in the plot, we find that often, if one

player that is winning against one group of opponents and another player

is losing to that group, then there is another group of opponents where

those relations are exactly opposite. This seems to indicate a kind of rock-

paper-scissors situation, which could be the reason why the absolute level

of play does not progress as much as expected during coevolution.

Even with few weights, the MDRNN is capable of a wide variety of behaviors.

When inspecting the generation champions of a coevolutionary run, we find a

88

Figure 4.8: CIAO plot of the champions of both populations (one on the vertical
axis, one on the horizontal one) during a typical run (the same run than Figure 4.7).
Bright points correspond to a high score, dark ones to a low one. In successful coevo-
lution, later generations (right/down) beat earlier ones (left/up), which is visible in
the brighter areas in the lower left and upper right of the plot.

89

Figure 4.9: Illustrative games of some generation champions. The last move
is marked by a circle for winning and cross for losing. Above: both players avoid traps
and corners in 5x5, which when scaled to the 9x9 board becomes border-avoidance.
Below, black is the same player than above, but white is a different champion, leading
to very different games.

large diversity of those behaviors. Figure 4.9 shows a few illustrative games,

with the same players (generation champions of a typical coevolutionary run)

on board sizes 5x5 and 9x9. Naturally the behavioral patterns look different on

a small board and on a large one, but they share common features.

4.5 Discussion

MDRNNs are scalable because they are approximately translation-invariant, in

addition to capturing the board symmetries. They handle the same situation

on a bigger board (with empty positions around it) in the exact same way as

on a smaller board. This allows them to use a comparatively low number of

weights (MDRNNs and MDLSTMs with k = 3 have 21 and 93 weights respec-

tively, independently of board size), thereby reducing the dimensionality of the

search space and making optimization efficient. Incorporating LSTM cells in

the swiping layer further enables the architecture to better handle long-distance

context, which is necessary for learning complex strategies, as our experiments

with the heuristic opponent show. The results show that MDLSTMs transfer

the strategies learned on small boards to large ones, leading to a level of play

on 15x15 that is on par with human beginners. Finally, due to the generality of

our approach and the similarity of our three games to Go, we expect our results

to carry over the game of Go itself.

90

Chapter 5

Conclusions

Epigraphs are pretentious,

especially self-referential ones.

Anonymous

I
n conclusion, we addressed the two questions that we set out to answer in

section 1.6:

Can we design a family of algorithms that are derived from first prin-

ciples, which reach state-of-the-art performance, while at the same

time being flexible enough to permit variants for a whole range of

problem classes?

In chapter 2, we introduced Natural Evolution Strategies, a novel family

of algorithms that constitutes a principled approach to black-box optimization.

Maintaining a parameterized distribution on the set of solution candidates, the

natural gradient is used to update the distribution’s parameters in the direction

of higher expected fitness. A collection of techniques have been introduced that

addresses issues of convergence, robustness, computational complexity, sensi-

tivity to hyperparameters and algorithm speed. We investigated a number of

instantiations of the NES family ranging from general-purpose multi-variate

normal distributions to heavy-tailed and separable distributions specialized in

global optimization and high dimensionality, respectively. The results show best

published performance on various standard benchmarks, as well as competitive

performance on others.

Can artificial curiosity be an effective guiding principle for deter-

mining the most informative search points in costly optimization?

In chapter 3 we demonstrated how the principle of artificial curiosity can

guide exploration in the context of costly optimization. We introduced a re-

sponse surface method, which estimates the interestingness of each candidate

91

point using Gaussian process regression. In addition, simultaneously optimiz-

ing the objective of expected information gain and the objective of expected

improvement makes the exploration-exploitation trade-off explicit, and permits

maximally informed search point selection.

As an additional study, in chapter 4 we applied black-box optimization to

the challenging problem of leaning to play the game of Go. We trained multi-

dimensional recurrent neural networks to play on small boards, and showed that

the learned skills translate to good quality of play on large boards as well.

5.1 Perspectives

Naturally, for every answered question, many new ones come to light; so here

we list a few thoughts for extensions and future work.

Linkage learning. One NES variant could operate with sparse covariance

matrices, where the sparse entries are learned. This would involve two theo-

retical developments. First, we could define a greedy procedure over randomly

sampled parameter-pairs to determine which ones to add to the matrix. The

most efficient procedure will involve collecting correlation statistics from a pool

of candidate pairs before they are added, because clearly, in high dimensions we

can not investigate all possible pairs. Also, we would periodically revisit the ex-

isting sparse entries and eliminate the least relevant ones. Second, we could an-

alytically derive the exact Fisher information matrix for sparse matrices, which

is needed to compute the natural gradient that NES follows. This approach

would allow us to effectively exploit structure in black-box problems without

relying on any domain knowledge. For example, on neuro-evolution problems,

we would expect to approximately recover the neuron-centered block-structure

(Gomez et al., 2008).

Low-rank approximations. A different NES extension with the same goal

of computational efficiency would be to use a low-rank approximation of the

covariance matrix, that is, with a small number of predominant search axes;

the rest of the dimensions are searched using mutations from a diagonal matrix.

Such a parametrization would allow the algorithm to follow low-dimensional

‘valleys’ embedded in high-dimensional space, enabling optimization on highly

non-separable problems, with a computational complexity that remains linear

in the number of dimensions.

Search distributions on discrete domains. It is important to realize that

the NES framework is not limited to continuous domains. In fact, NES can be

designed to directly operate on discrete search spaces, for example trees, graphs

or grammars. Program space constitutes a discrete search space of particular

interest, and it seems promising to extend the NES approach to program search

92

(genetic programming, Koza, 1992), building upon probabilistic representations

of program trees (e.g., Bosman and Jong, 2004; Salustowicz and Schmidhuber,

1997) for which the natural gradient can be estimated.

Stronger Go players. We can identify a number of possible avenues for

attaining stronger results on training neural networks to play Go. Directly

training against a stronger heuristic opponent (e.g. ε = 0.0, see chapter 4) is like

finding a needle in a haystack, as most initial networks will lose all games. So,

future work could address this issue by training against incrementally harder

opponents (Gomez and Miikkulainen, 1997). Also, we expect to eventually

reach a limit on the complexity of strategies that MDLSTMs can represent.

For this case we propose increasing their expressive power by stacking two or

more MDLSTMs on top of each other, the lower one producing a map of high-

level features that the top one scans over. Clearly, another viable extension

is to incorporate domain knowledge, e.g. by feeding the network a number of

domain-specific features (Wu and Baldi, 2007) instead of the raw board.

5.2 Closing Words

Now, at the end of this dissertation, I would like to take the opportunity to

thank you, the reader: The thought that someone will read until the end helped

me persevere in writing it. I hope you found something of value among these

thoughts, in the best case possibly even inspiring a new idea of your own!

93

94

Appendix A

Appendix: Implementations
in Python

V
irtually all the code implemented in the process of this work is available

within the open-source machine learning library PyBrain (Schaul et al.,

2010). In order to make our research as reproducible as possible, we wanted

to make the code available to the community, and we found the most effective

way for this to be the integration into an open-source library (that I am a core

developer of), along with documentation and code examples.

PyBrain is a machine learning library written in Python, designed to fa-

cilitate both the application of and research on premier learning algorithms.

PyBrain is implemented in Python, with the scientific library SciPy being its

only strict dependency. As is typical for programming in Python/SciPy, devel-

opment time is greatly reduced as compared to languages such as Java/C++,

at the cost of lower speed. PyBrain embodies a compositional setup, which

means that it is designed to be able to connect various types of architectures

and algorithms.

PyBrain goes beyond existing Python libraries in breadth, in that it provides

a toolbox for supervised, unsupervised and reinforcement learning as well as

black-box and multi-objective optimization. In addition to standard algorithms

(some of which, to the best of our knowledge, are not available as Python

implementations elsewhere) for application-oriented users, it contains reference

implementations of a number of algorithms at the bleeding edge of research.

Furthermore, it sets itself apart by its flexibility for composing custom neural

networks architectures, ranging from (multi-dimensional) recurrent networks to

restricted Boltzmann machines or convolutional networks.

Table A.1 gives pointers to the implementations corresponding to the work

presented in the previous chapters. The documentation, tutorials and more

information can be found on www.pybrain.org. The code itself is available

through github at github.com/pybrain/pybrain. Finally, the PyBrain com-

munity communicates mainly through the mailing list, where many common

questions have been answered already (groups.google.com/group/pybrain).

95

../../../../workspace/Tom-latex/thesis/www.pybrain.org
../../../../workspace/Tom-latex/thesis/github.com/pybrain/pybrain
../../../../workspace/Tom-latex/thesis/groups.google.com/group/pybrain

Table A.1: PyBrain implementations of algorithms, neural networks, benchmarks
and tools used in this dissertation, as well as a number other black-box optimization
algorithms.

Name Code file(s) in pybrain.* Mentioned in

chapter(s)

GA optimization.populationbased.ga 1

ES optimization.populationbased.es 2

PSO optimization.populationbased.pso 1

FEM optimization.distributionbased.fem 1

CMA-ES optimization.distributionbased.cmaes 1, 2, 4

xNES optimization.distributionbased.xnes 2, 3, 4

Coevolution optimization.populationbased.coevolution.* 4

NSGA-II optimization.populationbased.multiobjective.nsga2 3

RNN structure.networks.recurrent 2, 4

convolutional networks structure.networks.convolutional 4

LSTM structure.modules.lstm 4

MDRNN structure.networks.multidimensional 4

MDLSTM structure.networks.custom.* 4

BBOB benchmarks rl.environments.functions.bbob2010 2

pole balancing rl.environments.cartpole.* 2

Lennard-Jones rl.environments.functions.lennardjones 2

Branin benchmark rl.environments.functions.multimodal 3

Atari-Go rl.environments.twoplayergames.capturegame 4

Go-Muko rl.environments.twoplayergames.gomuko 4

Pente rl.environments.twoplayergames.pente 4

importance mixing auxiliary.importancemixing 2

Gaussian processes auxiliary.gaussprocess 3

plotting tools tools.plotting.*

96

Appendix B

Appendix: Weighted
Mann-Whitney Test

T
his appendix defines a weighted Mann-Whitney test, as used in section 2.4.4

for virtual adaptation sampling. Although the derivations are trivial, we

are not aware of any previous attempt to create a test with the same purpose.

Background. The classical Mann-Whitney test determines (with confidence

ρ) whether two sets of samples S = {si} and S′ = {s′i} are likely to come from

the same distribution. For that, the so-called U-statistic is computed:

U =
∑

si>s′j

1 +
∑

si=s′j

1

2

Let µ = nn′

2 and σ =
√

nn′(n+n′+1)
12 , where n and n′ are the number of

samples in S and S′, respectively. We can then determine the significance of

the difference between S and S′. They are different with confidence ρ if:

• Φ(U−µ
σ) > 1− ρ (if S has larger values), or

• Φ(U−µ
σ) < ρ (if S′ has larger values).

Introducing Weights. Now, assume that every sample in S and S′ has a

(positive) weight (wi or w′
i) associated to it. We can generalize the Mann-

Whitney test by interpreting the weights as fractional number of occurrences in

the sets:

U =
∑

si>s′j

wiw
′
j +

∑

si=s′j

1

2
wiw

′
j

Accordingly, we also need to adjust the number of samples: m =
∑n
i=1 wi

and m′ =
∑n′

i=1 w
′
i, and thus µ = mm′

2 and σ =
√

mm′(m+m′+1)
12 .

We can see this weighted U-statistic as an interpolation between the cases

covered by the classical one. In fact, if the weights are integers, a sample s with

weight w can be replaced equivalently by w occurrences of the same sample s

(each with weight 1).

97

98

Bibliography

Y. Akimoto, Y. Nagata, I. Ono, and S. Kobayashi. Bidirectional Relation be-
tween CMA Evolution Strategies and Natural Evolution Strategies. In Parallel
Problem Solving from Nature (PPSN), 2010. (Cited on pages 32 and 34.)

S. Amari. Natural gradient works efficiently in learning. Neural Computation,
10(2):251–276, 1998. (Cited on page 16.)

S. Amari and S. C. Douglas. Why natural gradient? In Proceedings of the 1998
IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP ’98), volume 2, pages 1213–1216, 1998. (Cited on page 16.)

C. Andrieu, N. D. Freitas, A. Doucet, and M. I. Jordan. An Introduction to
MCMC for Machine Learning. Machine Learning, 50(1):5–43, 2003. (Cited
on page 9.)

A. Auger. Convergence results for the (1,λ)-SA-ES using the theory of φ-
irreducible Markov chains. Theoretical Computer Science, 334(1-3):35 – 69,
2005. (Cited on page 9.)

A. Auger, S. Finck, N. Hansen, and R. Ros. BBOB 2010: Comparison Tables
of All Algorithms on All Noisy Functions. Technical Report RT-389, INRIA,
09 2010. (Cited on page 4.)

J. A. Bagnell and J. Schneider. Covariant policy search. In Proceedings of the
18th international joint conference on Artificial intelligence, pages 1019–1024,
San Francisco, CA, USA, 2003. Morgan Kaufmann Publishers Inc. (Cited on
page 59.)

P. Baldi and G. Pollastri. The principled design of large-scale recursive neu-
ral network architectures DAG-RNNs and the protein structure prediction
problem. Journal of Machine Learning Research, 4:575–602, 2003. (Cited on
page 77.)

P. Bayer, C. M. Bürger, and M. Finkel. Solving computationally-demanding
reliability-based design problems in hydrogeology. In Proceedings 6th Int.
Conf. on Calibration and Reliability in Groundwater Modeling - Credibility
in Modeling, pages 22–26. International Association of Hydrological Sciences,
2007. (Cited on page 8.)

H.-G. Beyer. The theory of evolution strategies. Springer-Verlag New York, Inc.,
New York, NY, USA, 2001. ISBN 3-540-67297-4. (Cited on page 9.)

H.-G. Beyer and H.-P. Schwefel. Evolution strategies: A comprehensive intro-
duction. Natural Computing, 1:3–52, 2002. (Cited on page 7.)

99

A. Booker, J. J. Dennis, P. Frank, and D. Serafini. Optimization using surrogate
objectives on a helicopter test example. Computational Methods in Optimal
Design and Control, 1998. (Cited on page 8.)

P. Bosman, J. Grahl, and D. Thierens. Enhancing the Performance of Maximum-
Likelihood Gaussian EDAs Using Anticipated Mean Shift. In Parallel Problem
Solving from Nature – PPSN X, pages 133 – 143, 2008. (Cited on page 69.)

P. A. Bosman and E. D. D. Jong. Learning Probabilistic Tree Grammars for
Genetic Programming. In Parallel Problem Solving from Nature - PPSN VIII,
volume 3242 of Lecture Notes in Computer Science, pages 192–201, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg. (Cited on page 93.)

G. E. P. Box and K. B. Wilson. On the Experimental Attainment of Optimum
Conditions. Journal of the Royal Statistical Society, 13(1):1–45, 1951. (Cited
on pages 7 and 8.)

C. J. F. T. Braak. A Markov Chain Monte Carlo version of the genetic algorithm
Differential Evolution: easy Bayesian computing for real parameter spaces.
Statistics and Computing, 16(3):239–249, 2006. (Cited on page 9.)

É. Cartan. Sur la représentation géométrique des systèmes matérieles non
holonomes. In Proc Int Congr Math, Bologna, volume 4, pages 253–261,
1928. (Cited on page 29.)

K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statis-
tical Science, 10:273–304, 1995. (Cited on pages 63 and 64.)

C. Charbuillet, B. Gas, M. Chetouani, and J. Zarader. Optimizing feature
complementarity by evolution strategy: Application to automatic speaker
verification. Speech Communication, 51(9):724 – 731, 2009. Special issue on
non-linear and conventional speech processing - NOLISP 2007. (Cited on
page 8.)

D. Cliff and G. F. Miller. Tracking the red queen: Measurements of adaptive
progress in co-evolutionary simulations. In Advances In Artificial Life, pages
200–218. Springer Verlag, 1995. (Cited on page 88.)

D. A. Cohn. Neural network exploration using optimal experiment design. In
Advances in Neural Information Processing Systems, pages 679–686, 1994.
(Cited on page 63.)

D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical
models. Journal of Artificial Intelligence Research, 4:129–145, 1995. (Cited
on page 65.)

L. Csató and M. Opper. Sparse on-line gaussian processes. Neural Computation,
14, 2002. (Cited on page 68.)

C. Darwin. On the origin of species by means of natural selection, volume 146.
John Murray, 1859. (Cited on page 7.)

A. A. de Moura Meneses, C. J. G. Pinheiro, P. Rancoita, T. Schaul, L. M.
Gambardella, R. Schirru, R. C. Barroso, and L. F. de Oliveira. Assess-
ment of neural networks training strategies for histomorphometric analysis
of synchrotron radiation medical images. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 2010. (Cited on page xx.)

100

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6:182 – 197, 2002. (Cited on pages 4, 64, and 68.)

M. P. Deisenroth, C. E. Rasmussen, and J. Peters. Gaussian process dynamic
programming. Neurocomputing, pages 1508–1524, 2009. (Cited on page 62.)

V. V. Fedorov. Theory of optimal experiments. Academic press, New York,
1972. (Cited on page 63.)

R. Fletcher. Practical Methods of Optimisation, (2nd Ed.). John Wiley, 1987.
(Cited on page 6.)

B. Freisleben and H. Luttermann. Learning to Play the Game of Go-Moku:
A Neural Network Approach. Australian Journal of Intelligent Information
Processing Systems, Vol. 3, No. 2, pages 52 – 60, 1996. (Cited on pages 75
and 76.)

F. Friedrichs and C. Igel. Evolutionary tuning of multiple SVM parameters.
Neurocomputing, 64:107–117, 2005. (Cited on pages 7 and 8.)

J. Gauci and K. Stanley. Generating large-scale neural networks through dis-
covering geometric regularities. In GECCO ’07: Proceedings of the 9th annual
conference on Genetic and evolutionary computation, pages 997–1004, 2007.
(Cited on page 77.)

S. Gherman. Atari-Go Applet in Java, 2000. URL
http://www.361points.com/capturego/. (Cited on page 76.)

T. Glasmachers and C. Igel. Gradient-based Adaptation of General Gaussian
Kernels. Neural Computation, 17(10):2099–2105, 2005. (Cited on page 28.)

T. Glasmachers, T. Schaul, and J. Schmidhuber. A Natural Evolution Strategy
for Multi-Objective Optimization. In Parallel Problem Solving from Nature
(PPSN), 2010a. (Cited on pages xviii, 32, and 38.)

T. Glasmachers, T. Schaul, Y. Sun, D. Wierstra, and J. Schmidhuber. Exponen-
tial Natural Evolution Strategies. In Genetic and Evolutionary Computation
Conference (GECCO), Portland, OR, 2010b. (Cited on page xviii.)

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1st edition, 1989. ISBN 0201157675. (Cited on pages 7 and 35.)

F. Gomez and R. Miikkulainen. Incremental Evolution of Complex General
Behavior. Adaptive Behavior, 5:317–342, 1997. (Cited on page 93.)

F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accelerated Neural Evolution
through Cooperatively Coevolved Synapses. Journal of Machine Learning
Research, 2008. (Cited on pages 8, 53, 54, and 92.)

A. Graves. Supervised Sequence Labelling with Recurrent Neural Networks.
Ph.D. in Informatics, Fakultat für Informatik – Technische Universität
München, 2008. (Cited on pages 74, 77, and 78.)

A. Graves and J. Schmidhuber. Offline Handwriting Recognition with Multidi-
mensional Recurrent Neural Networks. In NIPS, 2008. (Cited on page 77.)

101

http://www.361points.com/capturego/

A. Graves, S. Fernández, and J. Schmidhuber. Multidimensional Recurrent
Neural Networks. In Proceedings of the 2007 International Conference on
Artificial Neural Networks, September 2007. (Cited on pages 74, 77, and 78.)

V. Graziano, T. Glasmachers, T. Schaul, L. Pape, G. Cuccu, J. Leitner, and
J. Schmidhuber. Artificial Curiosity for Autonomous Space Exploration. Acta
Futura (in press), 2011. (Cited on page xx.)

M. Grüttner. Evolving Multidimensional Recurrent Neural Networks for the
Capture Game in Go. Bachelor thesis, Techniche Universität München, 2008.
(Cited on page 76.)

M. Grüttner, F. Sehnke, T. Schaul, and J. Schmidhuber. Multi-Dimensional
Deep Memory Atari-Go Players for Parameter Exploring Policy Gradients.
In International Conference on Artificial Neural Networks (ICANN), 2010.
(Cited on page xx.)

N. Hansen and A. Auger. Real-parameter black-box optimization benchmarking
2010: Experimental setup, 2010. (Cited on pages 47 and 48.)

N. Hansen and S. Finck. Real-parameter black-box optimization benchmarking
2010: Noiseless functions definitions, 2010a. (Cited on pages 47, 48, and 56.)

N. Hansen and S. Finck. Real-Parameter Black-Box Optimization Benchmark-
ing 2010: Noisy Functions Definitions, 2010b. (Cited on page 47.)

N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation, 9(2):159–195, 2001. (Cited
on pages 7, 20, 32, 33, 34, 35, 46, 59, and 79.)

N. Hansen, A. S. P. Niederberger, L. Guzzella, and P. Koumoutsakos. A method
for handling uncertainty in evolutionary optimization with an application to
feedback control of combustion. IEEE Transactions on Evolutionary Compu-
tation, 13:180–197, 2009. (Cited on page 8.)

M. Hasenjäger, B. Sendhoff, T. Sonoda, and T. Arima. Three dimensional
evolutionary aerodynamic design optimization with CMA-ES. In Proceedings
of the 2005 conference on Genetic and evolutionary computation, GECCO
’05, pages 2173–2180, New York, NY, USA, 2005. ACM. (Cited on page 8.)

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, 1970. (Cited on page 6.)

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computa-
tion, 9(9):1735–1780, 1997. (Cited on page 78.)

J. H. Holland. Adaptation in natural and artificial systems. MIT Press, Cam-
bridge, MA, USA, 1992. ISBN 0-262-58111-6. (Cited on page 7.)

J.-N. Hwang, J. J. Choi, S. Oh, and R. J. I. Marks. Query-based learning
applied to partially trained multilayer perceptrons. IEEE Transactions on
Neural Networks, 2:131–136, 1991. (Cited on page 63.)

O. Ibáñez, L. Ballerini, O. Cordón, S. Damas, and J. Santamar’ia. An Experi-
mental Study on the Applicability of Evolutionary Algorithms to Craniofacial
Superimposition in Forensic Identification. Information Sciences, 179(23):
3998–4028, 2009. (Cited on page 8.)

102

C. Igel and M. Husken. Empirical evaluation of the improved Rprop learning
algorithm. Neurocomputing, 50:2003, 2003. (Cited on page 25.)

C. Igel, N. Hansen, and S. Roth. Covariance Matrix Adaptation for Multi-
objective Optimization. Evolutionary Computation, 15(1):1–28, 2007. (Cited
on pages 8, 37, and 38.)

L. Itti and P. Baldi. Bayesian surprise attracts human attention. In Y. W. Platt,
B. Schölkopf, and J., editors, Advances in Neural Information Processing
Systems, pages 547—-554. MIT Press, 2006. (Cited on page 62.)

K. Iwamoto. Go for beginners. Ishi Press, 1972. (Cited on pages 74 and 75.)

G. A. Jastrebski and D. V. Arnold. Improving Evolution Strategies through
Active Covariance Matrix Adaptation. In IEEE Congress on Evolutionary
Computation, 2006. (Cited on page 46.)

M. Jebalia, A. Auger, M. Schoenauer, F. James, and M. Postel. Identification of
the isotherm function in chromatography using CMA-ES. In IEEE Congress
on Evolutionary Computation, pages 4289–4296, 2007. (Cited on page 8.)

M. Jebalia, A. Auger, and N. Hansen. Log-linear convergence and divergence
of the scale-invariant (1+1)-ES in noisy environments. Algorithmica, pages
1–36, 2010. online first. (Cited on page 9.)

D. R. Jones. A taxonomy of global optimization methods based on response
surfaces. Journal of Global Optimization, 21:345–383, 2001. (Cited on pages 8,
64, 70, and 71.)

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of
expensive black-box functions. Journal of Global Optimization, 13:455–492,
1998. (Cited on pages 8, 68, and 70.)

S. Kakade. A natural policy gradient. Advances in Neural Information Process-
ing Systems 14, 2:1531–1538, 2002. (Cited on page 59.)

J. H. Kämpf and D. Robinson. A hybrid CMA-ES and HDE optimisation
algorithm with application to solar energy potential. Applied Soft Computing,
9(2):738–745, 2009. (Cited on page 8.)

J. Kennedy and R. Eberhart. Swarm Intelligence. Morgan Kaufmann, San
Francisco, CA, 2001. (Cited on page 7.)

S. Kirkpatrick, C. D. Gelatt, Jr, and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220:671–680, 1983. (Cited on page 6.)

J. Klockgether and H. P. Schwefel. Two-phase nozzle and hollow core jet exper-
iments. In Proc. 11th Symp. Engineering Aspects of Magnetohydrodynamics,
pages 141–148, 1970. (Cited on page 8.)

J. Knowles, R. Watson, and D. Corne. Evolutionary Multi-Criterion Optimiza-
tion, volume 1993 of Lecture Notes in Computer Science. Springer, 2001.
(Cited on page 4.)

G. Konidaris, D. Shell, and N. Oren. Evolving Neural Networks for the Capture
Game. In Proceedings of the SAICSIT Postgraduate Symposium, 2002. (Cited
on page 75.)

J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. Cambridge, MA, 1992. (Cited on page 93.)

103

A. Krause and C. Guestrin. Nonmyopic active learning of gaussian processes:
An exploration-exploitation approach. In Proceedings of the International
Conference on Machine Learning, 2007. (Cited on pages 9 and 66.)

S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86, 1951. (Cited on page 17.)

P. Larrañaga. Estimation of Distribution Algorithms. A New Tool for Evolution-
ary Computation, chapter An introduction to probabilistic graphical models,
pages 25–54. Kluwer Academic Publishers, 2002. (Cited on page 7.)

Y. Lecun and Y. Bengio. Convolutional Networks for Images, Speech and Time
Series, pages 255–258. The MIT Press, 1995. (Cited on page 76.)

J. Leitner, C. Ampatzis, and D. Izzo. Evolving anns for spacecraft rendezvous
and docking. In 10th International Symposium on Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS), August 2010. (Cited on
page 8.)

M. Locatelli. Bayesian algorithms for one-dimensional global optimization.
Journal of Global Optimization, pages 57–76, 1997. (Cited on page 70.)

A. Lubberts and R. Miikkulainen. Co-Evolving a Go-Playing Neural Network.
In Genetic and Evolutionary Computation Conference Workshop Program,
pages 14–19. Morgan Kaufmann, 2001. (Cited on page 84.)

D. J. C. MacKay. Information-based objective functions for active data selection.
Neural Computation, 4:550–604, 1992. (Cited on page 63.)

M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transac-
tions On Modeling And Computer Simulation, 8(1):3–30, 1998. (Cited on
page 56.)

S. Mendes, J. Gomez Pulido, M. Vega Rodriguez, M. Jaraiz Simon, and
J. Sanchez Perez. A Differential Evolution Based Algorithm to Optimize
the Radio Network Design Problem. 2006 Second IEEE International Con-
ference on eScience and Grid Computing eScience06, 2(1):4–9, 2006. (Cited
on page 8.)

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of State Calculations by Fast Computing Machines. The Journal of
Chemical Physics, 21(6):1087–1092, 1953. (Cited on page 6.)

E. Miguez, E. Diaz-Dorado, and J. Cidras. An application of an evolution strat-
egy in power distribution system planning. In IEEE International Conference
on Evolutionary Computation Proceedings, pages 241 –246, may 1998. (Cited
on page 8.)

E. Minisci and G. Avanzini. Comparative study on the application of evolu-
tionary optimization techniques to orbit transfer maneuvers. In IAC 2008,
September 2008. (Cited on page 8.)

A. W. Moore and J. Schneider. Memory-based stochastic optimization. In
Advances in Neural Information Processing Systems, 1996. (Cited on page 7.)

S. D. Muller, J. Marchetto, S. Airaghi, and P. Koumoutsakos. Optimization
based on bacterial chemotaxis. IEEE Transactions on Evolutionary Compu-
tation, 6:6–16, 2002. (Cited on page 7.)

104

I. Najfeld and T. F. Havel. Derivaties of the Matrix Exponential and Their
Computation. Adv. Appl. Math, 16:321–375, 1994. (Cited on page 29.)

J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The
Computer Journal, 7(4):308–313, 1965. (Cited on page 6.)

X. Pang and P. J. Werbos. Neural Network Design for J Function Approxima-
tion. In in Dynamic Programming, Math. Modelling and Scientific Computing
(a Principia Scientia journal, 1996. (Cited on page 76.)

J. Peters. Machine Learning of Motor Skills for Robotics. PhD thesis, epartment
of Computer Science, University of Southern California, 2007. (Cited on
page 19.)

J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–
1190, 2008. (Cited on page 59.)

T. Pfingsten. Bayesian active learning for sensitivity analysis. In Machine
Learning: ECML 2006, pages 353 – 364, 2006. (Cited on page 62.)

M. Plutowski, G. Cottrell, and H. White. Learning Mackey-Glass from 25
Examples, Plus or Minus 2. In Advances in Neural Information Processing
Systems, pages 1135–1142, 1994. (Cited on page 63.)

C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learn-
ing. MIT Press, 2006. (Cited on pages 8, 66, 67, and 68.)

I. Rechenberg and M. Eigen. Evolutionsstrategie: Optimierung technischer
Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog
Stuttgart, 1973. (Cited on pages 7 and 35.)

N. Richards, D. E. Moriarty, and R. Miikkulainen. Evolving neural networks to
play Go. Applied Intelligence, 8:85–96, 1997. (Cited on page 74.)

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropaga-
tion learning: The RPROP algorithm. In IEEE International Conference on
Neural Networks, pages 586–591. IEEE Press, 1993. (Cited on page 25.)

M. B. Ring and T. Schaul. Q-error as a Selection Mechanism in Modular
Reinforcement-Learning Systems. In International Joint Conference on Arti-
ficial Intelligence (IJCAI), 2011. (Cited on page xx.)

R. Ros and N. Hansen. A Simple Modification in CMA-ES Achieving Linear
Time and Space Complexity. In R. et al., editor, Parallel Problem Solving
from Nature, PPSN X, pages 296–305. Springer, 2008. (Cited on pages 39
and 46.)

C. D. Rosin and R. K. Belew. Methods for Competitive Co-Evolution: Finding
Opponents Worth Beating. In L. J. Eshelman, editor, Proceedings of the Sixth
International Conference on Genetic Algorithms. San Francisco, CA: Morgan
Kaufmann, 1995. (Cited on page 84.)

R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified
Approach to Combinatorial Optimization, Monte-Carlo Simulation and Ma-
chine Learning (Information Science and Statistics). Springer, 2004. (Cited
on page 7.)

T. Rückstieß, F. Sehnke, T. Schaul, D. Wierstra, Y. Sun, and J. Schmidhuber.
Exploring Parameter Space in Reinforcement Learning. Paladyn Journal of
Behvioral Robotics, 1(1):14–24, 2010. (Cited on page xviii.)

105

T. P. Runarsson and S. M. Lucas. Co-evolution versus Self-play Temporal Dif-
ference Learning for Acquiring Position Evaluation in Small-board Go. IEEE
Transactions on Evolutionary Computation, pages 628–640, 2005. (Cited on
page 74.)

R. P. Salustowicz and J. Schmidhuber. Probabilistic Incremental Program Evo-
lution. Evolutionary Computation, 5:123–141, 1997. (Cited on page 93.)

T. Schaul and J. Schmidhuber. A Scalable Neural Network Architecture for
Board Games. In IEEE Symposium on Computational Intelligence in Games
(CIG), 2008. (Cited on page xix.)

T. Schaul and J. Schmidhuber. Scalable Neural Networks for Board Games.
In International Conference on Artificial Neural Networks (ICANN), 2009.
(Cited on page xix.)

T. Schaul and J. Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010a.
(Cited on pages xx and 24.)

T. Schaul and J. Schmidhuber. Towards Practical Universal Search. In Con-
ference on Artificial General Intelligence (AGI), Lugano, 2010b. (Cited on
pages xviii and 25.)

T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, T. Rückstieß,
and J. Schmidhuber. PyBrain. Journal of Machine Learning Research, 11:
743–746, 2010. (Cited on pages xix and 95.)

T. Schaul, T. Glasmachers, and J. Schmidhuber. High Dimensions and Heavy
Tails for Natural Evolution Strategies. In Genetic and Evolutionary Compu-
tation Conference (GECCO), Dublin, Ireland, 2011a. (Cited on page xviii.)

T. Schaul, L. Pape, T. Glasmachers, V. Graziano, and J. Schmidhuber. Coher-
ence Progress: A Measure of Interestingness Based on Fixed Compressors. In
Fourth Conference on Artificial General Intelligence (AGI), 2011b. (Cited on
page xix.)

T. Schaul, Y. Sun, D. Wierstra, F. Gomez, and J. Schmidhuber. Curiosity-
Driven Optimization. In IEEE Congress on Evolutionary Computation
(CEC), 2011c. (Cited on page xix.)

J. Schmidhuber. Curious model-building control systems. IEEE International
Joint Conference on Neural Networks, pages 1458 – 1463, 1991. (Cited on
pages 10, 61, and 62.)

J. Schmidhuber. Developmental robotics, optimal artificial curiosity, creativity,
music, and the fine arts. Connection Science, 18:173–187, 2006. (Cited on
pages 61 and 62.)

J. Schmidhuber. Simple algorithmic principles of discovery, subjective beauty,
selective attention, curiosity and creativity. Lecture Notes In Artificial Intel-
ligence, 4754, 2007. (Cited on pages 10 and 62.)

J. Schmidhuber. Driven by compression progress: A simple principle explains
essential aspects of subjective beauty, novelty, surprise, interestingness, at-
tention, curiosity, creativity, art, science, music, jokes. Anticipatory Behavior
in Adaptive Learning Systems, from Sensorimotor to Higher-level Cognitive
Capabilities, 2009. (Cited on pages 61 and 62.)

106

N. N. Schraudolph, P. Dayan, and T. J. Sejnowski. Temporal Difference Learn-
ing of Position Evaluation in the Game of Go. In J. D. Cowan, G. Tesauro, and
J. Alspector, editors, Advances in Neural Information Processing Systems,
volume 6, pages 817–824. Morgan Kaufmann, San Francisco, 1994. (Cited on
pages 76 and 78.)

M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45:2673–2681, November 1997. (Cited on
page 77.)

H.-P. Schwefel. Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie, volume 26. Birkhaeuser, Basel/Stuttgart, 1977. (Cited
on page 7.)

S. Seo, M. Wallat, T. Graepel, and K. Obermayer. Gaussian process regression:
Active data selection and test point rejection. In Proceedings of the Interna-
tional Joint Conference on Neural Networks (IJCNN), pages 241–246. IEEE,
2000. (Cited on page 67.)

J. Shepherd, D. McDowell, and K. Jacob. Modeling morphology evolution and
mechanical behavior during thermo-mechanical processing of semi-crystalline
polymers. Journal of the Mechanics and Physics of Solids, 54(3):467 – 489,
2006. (Cited on page 7.)

D. Silver, R. S. Sutton, and M. M. 0003. Reinforcement Learning of Local Shape
in the Game of Go. In IJCAI, pages 1053–1058, 2007. (Cited on page 76.)

K. O. Stanley and R. Miikkulainen. Competitive coevolution through evolution-
ary complexification. Journal of Artificial Intelligence Research, 21:63–100,
2004a. (Cited on page 87.)

K. O. Stanley and R. Miikkulainen. Evolving a Roving Eye for Go. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO),
2004b. (Cited on pages 74 and 76.)

J. Storck, J. Hochreiter, and J. Schmidhuber. Reinforcement-driven information
acquisition in non-deterministic environments. In International Conference on
Artificial Neural Networks (ICANN), pages 159–164, Paris, 1995. (Cited on
pages 62 and 63.)

R. Storn and K. Price. Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization,
11:341–359, December 1997. (Cited on page 7.)

Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber. Efficient Natural Evolution
Strategies. In Genetic and Evolutionary Computation Conference (GECCO),
2009a. (Cited on pages xviii and 34.)

Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber. Stochastic Search using the
Natural Gradient. In International Conference on Machine Learning (ICML),
number 1, 2009b. (Cited on pages xviii and 34.)

Y. Sun, T. Glasmachers, T. Schaul, and J. Schmidhuber. Frontier Search. In
Conference on Artificial General Intelligence (AGI), Lugano, 2010. (Cited on
page xx.)

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998. (Cited on page 8.)

107

J. Togelius, T. Schaul, J. Schmidhuber, and F. Gomez. Countering Poisonous
Inputs with Memetic Neuroevolution. In Parallel Problem Solving from Na-
ture (PPSN). Springer-Verlag, 2008. (Cited on page xix.)

J. Togelius, T. Schaul, D. Wierstra, C. Igel, F. Gomez, and J. Schmidhuber. On-
togenetic and Phylogenetic Reinforcement Learning. (3):30–33, 2009. (Cited
on page xx.)

E. van der Werf, H. J. van den Herik, and J. Uiterwijk. Solving Go on small
boards. International Computer Games Association Journal, 26, 2003. (Cited
on page 74.)

D. Wales and J. Doye. Global Optimization by Basin-Hopping and the Lowest
Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms.
The Journal of Physical Chemistry A, 101(28):8, 1998. (Cited on pages 8, 54,
and 55.)

S.-K. Wang, J.-P. Chiou, and C.-W. Liu. Non-smooth/non-convex economic dis-
patch by a novel hybrid differential evolution algorithm. Generation, Trans-
mission Distribution, IET, 1(5):793 –803, september 2007. (Cited on page 8.)

D. Weyland. A Rigorous Analysis of the Harmony Search Algorithm - How the
Research Community can be misled by a “novel” Methodology. International
Journal of Applied Metaheuristic Computing, 1(2):50–60, 2010. (Cited on
page 6.)

A. Wieland. Evolving Neural Network Controllers for Unstable Systems. In Pro-
ceedings of the International Joint Conference on Neural Networks (Seattle,
WA), pages 667–673, 1991. (Cited on page 53.)

D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber. Natural Evolution
Strategies. In IEEE Congress on Evolutionary Computation (CEC), 2008a.
(Cited on page xviii.)

D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber. Fitness Expectation
Maximization. In Parallel Problem Solving from Nature (PPSN). Springer-
Verlag, 2008b. (Cited on pages xix and 7.)

D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber. Episodic Reinforcement
Learning by Logistic Reward-Weighted Regression. In International Confer-
ence on Artificial Neural Networks (ICANN), 2008c. (Cited on page xx.)

S. Winter, B. Brendel, and C. Igel. Registration of bone structures in 3D ultra-
sound and CT data: Comparison of different optimization strategies. Inter-
national Congress Series, 1281:242 – 247, 2005. (Cited on page 8.)

L. Wu and P. Baldi. A Scalable Machine Learning Approach to Go. In
B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Informa-
tion Processing Systems 19, pages 1521–1528. MIT Press, Cambridge, MA,
2007. (Cited on pages 74, 77, and 93.)

Y. Zhang, W. Xu, and J. Callan. Exploration and exploitation in adaptive
filtering based on bayesian active learning. In International Conference on
Machine Learning (ICML), pages 896–903, 2003. (Cited on page 64.)

E. Zitzler and L. Thiele. Multiobjective Optimization Using Evolutionary Al-
gorithms – A Comparative Case Study. In Parallel Problem Solving from
Nature (PPSN V), pages 292–301. Springer, 1998. (Cited on page 38.)

108

Index

active learning, 9

adaptation sampling, 12, 24, 46, 97

artificial curiosity, 10, 61

Atari-Go, 75, 82, 96

BBOB, 47, 53, 57, 96

black-box optimization, 3, 92

Cauchy, 13, 37, 44, 47, 56, 59

CMA-ES, 7, 11, 20, 32, 38, 46, 47, 79,

82, 96

coevolution, 84, 96

combinatorial optimization, 2

computation time, 5

computational complexity, 6, 12, 38,

67, 92

constrained optimization, 2

continuous optimization, 2

convergence analysis, 6

convolutional networks, 76, 82, 96

cost function, 1

costly optimization, 5, 62, 71, 73

covariance matrix, 12, 29

cumulative regret, 5

curiosity-driven optimization, 65, 66,

71

decision variables, 1

differential evolution, 7, 9

discrete optimization, 2

dominance number, 87

double-funnel, 56

elitism, 35

estimation of distribution algorithms,

7, 69, 96

evaluation, 5

evolution strategies, 7, 9, 14, 96

expected improvement, 64

expected information gain, 63, 71

exponential map, 12, 28, 38

Fisher information matrix, 19, 29, 92

fitness baseline, 20

fitness shaping, 12, 20, 46

Gaussian processes, 8, 66, 68, 96

genetic algorithms, 7, 96

genetic programming, 93

global optimization, 3, 59, 69, 70

Go, 73, 74, 93

Go-Moku, 75

Go-Muko, 96

gradient ascent, 12

heavy-tailed distribution, 12, 13, 42,

45, 47, 56, 59

hill-climber, 20, 36, 46, 54

host-parasite, 84

importance mixing, 12, 22, 46, 96

interestingness, 61

invariance, 20, 29, 32, 34, 42, 43, 75

kernel, 66, 68

leave-one-out, 63

Lennard-Jones, 54, 96

linear correlation, 80, 84

109

local optimization, 3, 69

low-rank, 92

LSTM, 78, 79, 96

Markov chain Monte Carlo, 9

MDLSTM, 78, 82, 90, 93, 96

MDRNN, 77–79, 90, 96

metaheuristics, 3

mixture of Gaussians, 65

multi-modal, 3, 12, 25, 47, 48, 50, 56,

58, 65, 69

multi-objective optimization, 4, 37, 64,

68, 96

natural coordinates, 29

Natural Evolution Strategies, 11

natural gradient, 12, 16, 93

noisy optimization, 3, 48

non-dominated, 4, 38, 64

numerical optimization, 2

objective function, 1

order of convergence, 6

parameter space, 18

Pareto-front, 4, 37, 61, 64, 67, 68

particle swarm optimization, 7, 96

penalty term, 2

Pente, 75, 82, 96

pole balancing, 54, 96

program search, 92

PyBrain, xix, 47, 53, 79, 87, 95, 96

quasi-Newton, 6

radial distribution, 36, 40, 41, 59

randomized search methods, 3

rate of convergence, 6

receptive field, 76

recurrent neural networks, 53, 76, 96

reinforcement learning, 8, 62, 71

response surface methods, 7, 61

restart strategies, 3, 12, 25, 48

scalability, 73, 76, 84

scale-invariant, 16

search distribution, 11

search gradient, 12–14

search space, 1, 18

separable distribution, 13, 38, 40, 48

simplex methods, 6

simulated annealing, 6

SNES, 46, 47

sparse, 92

stochastic search, 12

sublinear, 6

superlinear, 6

unconstrained optimization, 2

utility, 20, 33, 35, 46

weighted Mann-Whitney, 97

xNES, 26, 32, 38, 46, 47, 68, 79, 96

110

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Preface
	Thesis Outline
	Related Publications
	Incorporated in Chapter 2
	Incorporated in Chapter 3
	Incorporated in Chapter 4
	Incorporated in Appendix A
	Other Publications

	Notation

	Acknowledgments
	Introduction: Continuous Black-box Optimization
	Problem Definition
	Continuous Optimization: Real-valued Solution Space
	Black-box Optimization: Unknown Function
	Local Optimization: Find a Nearby Optimum
	Noisy Optimization: Functions Corrupted by Noise
	Multi-objective Optimization

	Evaluating Optimization Algorithms
	State-of-the-Art Approaches
	Evolutionary Methods
	Response Surface Methods

	Impact and Applications
	Related Problem Domains
	Open Questions

	Natural Evolution Strategies
	The NES Family
	Chapter Outline

	Search Gradients
	Search Gradients for Gaussian Distributions
	Limitations of Plain Search Gradients

	Using the Natural Gradient
	Performance and Robustness Techniques
	Fitness Shaping
	Fitness Baselines
	Importance Mixing
	Adaptation Sampling
	Restart Strategies

	Techniques for Multinormal Distributions
	Using Exponential Parameterization
	Using Natural Coordinates
	Orthogonal Decomposition of Multinormal Parameter Space
	Connection to CMA-ES
	Elitism
	Use for Multi-objective NES

	Beyond Multinormal Distributions
	Separable NES
	Rotationally-symmetric Distributions
	Sampling from Radial Distributions
	Computing the Fisher Information Matrix

	Heavy-tailed NES
	Groups of Invariances
	Cauchy Distribution

	Experiments
	Experimental Setup and Hyperparameters
	Black-box Optimization Benchmarks
	Separable NES
	Separable and Non-separable Benchmarks
	Neuro-evolution
	Lennard-Jones Potentials

	Heavy Tails and Global Optimization
	Results Summary

	Discussion

	Curiosity-driven Optimization
	Artificial Curiosity
	Background
	Artificial Curiosity as a Guide for Optimization
	Formal Framework

	Exploration/Exploitation Trade-off.
	Curiosity-driven Optimization (General Form)
	Models of Expected Fitness and Information Gain
	A Good Model Choice: Gaussian Processes
	Derivation of Gaussian Process Information Gain

	Curiosity-driven Optimization with Gaussian Processes
	Minimal Asymptotic Requirements
	Reaching Optima at Arbitrary Distance
	Locating Optima with Arbitrary Precision
	Guaranteed to Find Global Optimum

	Proof-of-concept
	Discussion

	A Study in Scalability
	Scalability in Problem Size
	Example Domain: the Game of Go
	Rules of the Game
	Challenges of Go
	Simpler Variants of Go
	Computer Opponents

	Scalable Neural Architectures
	Multi-dimensional RNN
	Multi-dimensional LSTM
	A Custom Architecture for Go

	Experiments
	Experimental Setup
	Random-weight Networks
	Optimized Networks
	Coevolved Networks

	Discussion

	Conclusions
	Perspectives
	Closing Words

	Appendix: Implementations in Python
	Appendix: Weighted Mann-Whitney Test
	Bibliography
	Index

