A Scalable Neural Network Architecture for Board Games
Tom Schaul, Urgen Schmidhuber

Abstract— This paper proposes to use Multi-dimensional Il. BACKGROUND
Recurrent Neural Networks (MDRNNSs) as a way to overcome . .
one of the key problems in flexible-size board games: scalability. A- Flexible-size board games

We show why this architecture is well suited to the domain There is a large variety of board games, many of which

chnhmhguiagnse d%ﬁgiens:ssfggéﬁt(r:all?rt]egwfgdgljy \}CS sfeingatmhz? ' either have flexible board dimensions, or have rules that can

performance on small boards correlates well with performance b€ trivially adjusted to make them flexible.
on large ones, and that this property holds for networks trained The most prominent of them is the game of Go, research

by either evolution or coevolution. on which has been considering board sizes between the min-
imum of 5x5 and the regular 19x19. The rules are simple[4],
I. INTRODUCTION but the strategies deriving from them are highly complex.

. Players alternately place stones onto any of the intemseti
Games are a particularly interesting domain for studies of . . .)
of the board, with the goal of conquering maximal territory.

machine learning techniques. They form a class of clean and .
%\Iplayer can capture a single stone or a connected group
0

elegant environments, usually described by a small set ;) .
L his opponent’s stones by completely surrounding them
formal rules, have very clear success criteria, and yet they. .) s
ith his own stones. A move is not legal if it leads to a

often involve highly complex strategies. . o . .
Board I hibit th feat ¢ hi reviously seen board position (to avoid cycling). The game
oard games generally exhibit these features to a high ..\ /hen both players pass.

degree, and so it's not surprising that the field of machine Go exhibits a number of interesting symmetries. Apart

learning has devoted major efforts to their study, with th rom the four straightforward axes of symmetry, it also has

result that in aimost all popular board games, most notabaln approximate translational invariance, which is cle#ner
chess, computer programs can beat all human players. further away from the border one is

Probaf\gly th:f rr]nost g]terelstlrzjgf exceptlllogl IS dthel a:)ncilgnt Among the practical difficulties with conducting experi-
game 0fGo, which can be solved for small boards [1] bu 'Sments on Go are the need to distinguish dead groups from

very ch_allenging for larger ones [2], [3]. Go has a very hig'%llive and seki ones, keep track of the history of all board
branching factor because at any moment there are abOUtc %figurations, and the difficulty of handling pass moves.

many legal moves as there are f_ree pos:|t-|ons on the bo ny other machine learning approaches to Go simplify the
(on average 200). This makes using traditional searchdbas&lles to prevent some or all of those problems
mTthOdsldpLOh'r?'talle% ex.petr;lsw'fe. Id trai | A number of variations of Go, of varying degrees of simi-

twould be highly desirable If one could train a player Onlarity, are played on the same board and share the symmetry
small boards, and then transfer that knowledge to bootstr operties of Go. The most common ones are Irensei, Pente
Iearning on larger boards (where tfai”ing IS much mor enju, Tanbo, Connect, Atari-Go and Gomoku. In this paper
expensive). Fortunately, the game’s high degree of symymety .\« onduct experiments on the latter two.

makes using patterns a viable strategy (which is heavilg use Atari-Go, also known as Ponnuki-Go or ‘Capture Game',

by human expert players). This has leo.l researchers to_ % simplified version of Go that is widely used for teaching
tools that are good at pattern recognition, most of whic

LI L “the game of Go to new players, because it introduces many
are connectionist in nature, on Go and similar games — wi

; the key concepts without the full complexity [5]. The
varying degrees of success. So far, none of these methor y pts Withou y plexity [5]

o e fes are the same than for Go, except that passing is not
has been fo.ur'1d t(.) exhibit a large degreescﬂllablllty |n.the allowed, and the first player to capture a predetermined
sense that it is directly usable on different board sizes al

- . ; mber (usually one) of his opponent’s stones wins (see
leads to similar behavior across board sizes. figure 9 for an example).

h In .th's plag:er _wehpropose aAgg.u_r al rllletvx_/ork (;irchltecture Compared to Go, this variant makes playing independent
that is scalable in this sense. Itionally, in order top<ee0f history and makes it straightforward to determine the

our ?Pproa"h general, we ke,ep it free frqm any,domal%mner, which in turn makes automated playing easier and
specific knowledge. We investigate the architecture’s grop

o d . he plavi : h b hfafiter. It retains the concept of territory: as in the end no
ties, determine the playing performance that can be reachgl o may pass, each one has to fill his own territory and

by u_sing standard evolutionary methods, and fin_aIIy Verif¥herefore the player with most territory wins. Other stgite
that its performance scales well to larger board sizes. of Go, such as building eyes, or recognizing life-and-death

_ _ _ situations may be less important in Atari-Go, but are still
Both authors are with IDSIA, Galleria 2, 6927 Manno-LugaBwiitzer-

land, {t om j uergen}@ dsi a. ch. Jiergen Schmidhuber is also with present.) o S)
TU-Munich, Boltzmannstr. 3, 85748 Garching ilchen, Germany We believe that all this is a good justification for using

Atari-Go as a test problem instead of Go, especially in early Standard recurrent neural networks (RNNs) are inherently
stages, before high-level performance is reached on Go. one-dimensional, they are effective for handling sequence
Gomokuy also known as ‘Five-in-a-row’, is played on thewith a single (time-) dimension. MDRNNs are a generaliza-
same board as Go, but the rules are even simpler. Play¢ien of RNNs that overcome this limitation and handle multi-
alternate putting stones onto any of the intersections en tldimensional inputs. In our case the single time dimension is
board. The first player to have 5 connected stones in a romplaced by the two space dimensions of the board [12].
column or diagonal, wins. Intuitively, imagine a unitu thatswipesdiagonally over
While trying to block off the opponent’s lines, a playerthe the board from top-left to bottom-right. At each board
tries to keep its own lines unblocked, and potentially d@osition (¢, j), it receives as an input the information from
multiple attacks at the same time, not all of which carthat board positionn; ; plus its own output from when it
be countered. These strategies, again, are heavily pattewas one step to the left. (;_; ;, and from when it was one
based [6]. step upu~_(; ;—1)- It processes those inputs and produces an

outputu~_; ;). See also figure 1 for an illustration.
B. Scalable neural architectures

A large variety of neural network architectures have bee
proposed for solving board games. Here, we will briefly
mention some of those that exhibit a certain degree « outi)
scalability with respect to board size. y

One approach is to use a limitéoicussize on the board,
use a form of preprocessing on it, and then reuse it in ¢
identical fashion across the rest of the board. The outpu
of that stage are then fed into some other architecture tr
combines them (e.g. [7]). @

A variant of this idea are convolutional networks [8],

which repeat this step on multiple levels, thus capturingemo n
than just local patterns. Still, they are limited to (matyal @ A
fixed focus sizes at each level.

‘Roving-eye’-based architectures [9] contain one compc
nent with a fixed focus size that can be aimed at any part
the board. This is then combined with an active compone!
that can rove over the board until it feels ready to take

decision. @

Other architectures have been proposed [10], [6] whic
make use of weight-sharing to capture domain-specific syr
metries, but these are limited to a particular game, and alsu
restricted in what kind of strategies they can learn. Fig. 1. MDRNN structure diagram.

Simultaneous Recurrent Networks [11] are structured like
cellular automata. They successfully incorporate the @hol Because of the recurrency, the unit has indirect access
context and make use of symmetries, but are not vemy board information from the whole rectangle between
efficient. (0,0) and (i, 4). It would be even more desirable to have

Graves [12] has developed a more general architeguch access to the whole board, which can be achieved by
ture, called Multidimensional Recurrent Neural Ne'[WOI’kSusing 4 swiping units, one for each of the diagonal swiping
(MDRNNSs), which is a special case of the DAG-RNNsdirections inD = {\,, /,/,~\} (this is a generalization
proposed by Baldi [13]. While successfully used for visiorof bidirectional RNNs). The output layer then, for every
tasks [14], they have been largely neglected in the domagbsition, combines the outputs of the 4 units to a single
of games, with the notable exception of Wu et al. [15], whwalue out; ; (which is potentially derived from the whole
applied them to supervised learning of expert moves for G@oard information). The exact formulas are:

MDRNNSs are efficient, and we believe that they have
precisely the qualities of scalability that we are lookiny, f

while remaining general enough to be used on many different U~ (i,5) = tanh[w; x in; ; + wp * us (i-1,5)
games. Fwn * U (i,-1)]
IIl. PROPOSEDARCHITECTURE (and analogous for the other directions)
In this section we will provide a brief description of
MDRNNSs in general and give the details of the specific form out; j = Z Wo * Uy (i)

used here. oeD

On the boundaries, whetg, is not defined, we replace it use very common and general algorithms for training it. This
by a fixed valuew, (for all borders). In order to enforce makes sure that our results are more significant, as they are
symmetry, we use the same connection weights for aflot an artifact of a particular algorithm, and can be easily
swiping units. Altogether, this then gives us 4 groups ofeproduced.
weights in the networkw;, wy,, w, andwy. The total number ~ We chose the well-established Evolution Strategies [16]
of weights is therefor@k + k? + k + k = 4k + k? where for training the network weights directly. The fitness is
k is the number of hidden neurons in each swiping unit. Idetermined by playing against a fixed opponent.
most of our experiments we uge= 10, and thus need to However, as training against a fixed opponent both biases
train only 140 weights, which is very little compared to athethe direction of evolution and limits performance to that
approaches. of the opponent, we decided to also perform experiments

At each position, the network takes two inputs whichwith coevolution. For that, we use population-based compet
indicate the presence of a stone at this position. The firgive coevolution, based on thieost-parasiteparadigm (as
one is 1 if a stone of the networks own color is present andescribed in [17]). In order to preserve diversity, we use
0 otherwise, the second input encodes the presence of tae following standard enhancements (from [18]):shared
opponent’s stone in the same way. A black/white symmetriiitnessb) shared sampling) hall of fame.
encoding, as used in other approaches (e.g. [10]) is not .
applicable here, because the output is not symmetrical: the EXPerimental Setup
best move for both players might be the same. The two opponent players we are using throughout the

The output value at each position expresses the networlégperiments are:
preference for playing there. A move is chosen by the , therandom player which randomly chooses any of the
network, by drawing a position from the Gibb’s distribution legal moves,

(with adjustable temperature) of the output values. The , thenaive player which does a one-ply search. If possi-
choice is limited to legal moves, as provided by the game ple, it always picks a move that makes it win the game
rules, so in practice the network outputs corresponding to immediately, and never picks a move that would make it
illegal moves are ignored. If the temperature is set to zero, |ose the game immediately. In all other cases (the large
moves are selected greedily (randomly breaking ties). majority), it randomly picks a legal move.

For our implementation, we unfold the MDRNN along - as fitness we use the average score over 100 games against
both dimensions and end up with a large but simple feedy, gpponent, alternating which player starts. In order tkema

forward network with a lot of weight-sharing. This makesit more informative than a pure win/lose score, we compute
evaluations efficient: on a normal desktop computer, thge score for a single game as follows:

network needs about 2ms to choose a move on a 5x5 board,
and 20ms on a 9x9 board.
Figure 2 illustrates how the network processes board
inputs. In this example the network had 2 hidden neurons, SCOré= [y _
and random weights. It is worth noting that in the space L+ — if game lost

without any stones nearby the activations are symmetricghi, p = 0.2, M the number of moves done before the game
with respect to the border, but not around the stones. is over, M, ,;,, the length of the shortest game aht, ., the
length of the longest game possible.

If not explicitly stated otherwise, we use the following
settings:

o k=10 hidden nodes (140 weights)

« greedy play (temperature = 0)

« random weights are drawn from the normal distribution

N(0,1)
« the default opponent is the naive player.

1— M—Mpyin

2y " if game won

V. EXPERIMENTS

Fig. 2. Left: the board given as an input. Right: the outputhef network This section provides the empirical results coming out of
(Of the perSpeCtive of the white player), with brlghter peinorresponding our Study of applylng our architecture to the two problem
to higher numbers. . .
domains (Atari-Go and Gomoku).
We start by comparing the performance of our architecture

IV. METHODOLOGY with untrained weights to standard multi-layer percepgron
) (MLP), also untrained. Next, we study its scalability by
A. Evolutionary methods varying the board size. Then we train the architecture,

With a similar reasoning than for wanting to keep theusing on the one hand simple evolution with as fithess the
architecture free from domain knowledge, we also want toetwork’s performance against the naive player, and on the

other hand competitive coevolution. Finally, we investiga
whether the performance on those trained networks scales to ‘ T — aive1s

larger board sizes.

A. Random weight performance

As a first experiment, we determine whether our architec-
ture is suitable for the chosen problem domains. We thezefor
compare the untrained performance of our architecture with
the performance of an untrained, standard MLP. We sample o3
networks with a fixed architecture and random weights, and
then evaluate their average performance over 100 games
against one of the fixed opponents, and on different board

sizes. 1.0 ; : : :

Here, the MLP are of the following standard form: input e
and output layers are the same than for the MDRNNSs. There B
is a single fully connected hidden layer of sigmoid units. We 05f

experimented with different sizes for the hidden layer, and
found the results not to be very sensitive to that choice. The
presented results were produced with a hidden layer of 100

neurons.

1.0

— naive-5
— naive-9
— naive-19
LT - rand-5
0.5 .. e -~ rand-9
e rand-19

0.0

performance

-0.5

180 0.2 0.4 0.6 0.8 1.0
percentile

1.0

— naive-5
— naive-9
- rand-5
- rand-9

0.5

0.0

performance

-0.5

180 0.2 0.4 0.6 0.8 1.0
percentile

Fig. 3. Performance percentiles on Atari-Go, on board siz&sahd 9x9
and against both the naive and the random opponent. Perfoeriarthe
averaged score over 100 games. Above: MDRNN, below: MLP.

0.5\ B -~ rand-9

0.0F

performance

~ L L L s
1'8.0 0.2 0.4 0.6 0.8 1.0
percentile

performance

180 0.2 0.4 0.6 0.8 1.0
percentile

Fig. 4. Performance percentiles on Gomoku, on board sizes Ba®=9
and against both the naive and the random opponent. Perfoemarthe
averaged score over 100 games. Above: MDRNN, below: MLP.

the same number of hidden nodes. This is especially true
on larger boards — in fact where the performance of MLPs
goes down with increasing board size, it actually gop$or
MDRNNSs.

Interesting to note is also the performance distributian fo
Gomoku on board size 5x5: almost all networks of both
kinds have a score close to zero, which means that the large
majority of games ends in a draw. This is not surprising, as
on such a small board even a random player easily disrupts
the building of rows of five stones.

B. Scalability for untrained networks

The next experiment aims to determine the degree of scala-
bility of our architecture. For that, we sample MDRNNs with
random weights, and then measure their average performance
(over 100 games) against one of the fixed opponents, on
different board sizes. We then determine the linear cdiosia
(Pearson coefficient), and also the proportjpf samples
for which the score is higher on the larger board than on the
smaller one.

Figures 3 and 4 show the distribution of performance of Figure 5 plots the performance of random MDRNNs on
networks with randomly guessed weights on both Atari-G6x5 versus 9x9 against the random opponent. It provides a
and Gomoku. The results are based on at least 200 sampye®d visual intuition about the high correlation of perfor-
per scenario. The results show clearly that it is much easigrance between different board sizes.
to get good or reasonable performance with random weightsTable | shows that this result holds for a broad range of
using an MDRNN compared to using a standard MLP witlscenarios. The results for all scenarios are based on t leas

1.0

« the fitness evaluation is the one described in section IV-
B, with respect to naive player.
All those settings are identical for both Atari-Go and
Gomoku.

Figure 6 shows the performance during evolution. The
results are the average values over 10 independent runs.
As the fitness evaluation is noisy, we reevaluate it at every
generation. This is also the reason that the performance of
the best network per generation is not strictly increasing.

0.5F «° Sew
. .,

performance on 9x9

1.0

. . .
0.0 0.5 1.0
performance on 5x5

O_SM
Fig. 5. Performance of the same random networks on differestdhgizes.

TABLE |
CORRELATION OF PLAY PERFORMANCE AGAINST A FIXED OPPONENT

fitness

Game | Opponent Sizes Correlation| p
Atari-Go | Random 5x5 vs. 9x9 0.81 0.71
Atari-Go Naive 5x5 vs. 9x9 0.70 0.49
Atari-Go | Random | 7x7 vs. 11x11 0.78 0.73
Atari-Go Naive 7X7 vs. 11x11 0.72 0.56 1.0 200 200 600 800 1000
Atari-Go | Random | 9x9 vs. 19x19 0.71 0.76 evaluations
Atari-Go Naive 9x9 vs. 19x19 0.66 0.61 H
Gomoku | Random 5x5 vs. 9x9 0.12 0.79
Gomoku Naive 5x5 vs. 9x9 0.07 0.42 o5l
Gomoku | Random | 7x7 vs. 11x11 0.60 0.78
Gomoku Naive 7X7 vs. 11x11 0.64 0.58
Gomoku | Random | 9x9 vs. 19x19 0.63 0.77 £ ool
Gomoku Naive 9x9 vs. 19x19 0.62 0.67 &

-0.5f

200 samples.
— avg

We find that the correlations are always positive. They 1.0} o~ e - o~ =
are high in all scenarios, with the exception of Gomoku on evaluations
size 5x5. We suspect that this is due to the large number
of games ending in a draw (see section V-A) on that siz&ig. 6. Average and best population fitness during evolutiove: Atari-
Another interesting observation is that in almost all cases & Pelow: Gomoku.

is significantly larger than the expected 0.5, which is aeoth The performance looks a bit better for Gomoku than for

indication of the good scalability of the architecture. ; . oo
In section V-E we will use the same methodology tOAtarl-Go, but we can conclude that evolution easily finds
; - . . : 5 ights th h i I Ithough
determine the scalability for networks with trained wegght weights that beat the naive player on most games, althoug

is seems hard to reach really high performance.
C. Training against a fixed opponent D. Competitive Coevolution

In order to determine whether our architecture can be Tg make our results independent of the biased fitness
trained to reach the level of play of a given fixed opponenineasure provided by a fixed opponent, we also train our
we use a simple evolution strategy. architecture using coevolution.

Experimenting with many different parameters, we did Coevolution implies that there is no external fitness mea-
not find their exact choice to be very sensitive, as longyre (as in section V-C), only a relative fitness. We compute
as the population size is large enough (simple hill-clingbinthe relative fitness of two players as the average score of
performed much worse). We use the following settings: an equal number of games with each player starting. In case

« population size of 15, with an elitist selection }QI i.e. both players are greedy, it is sufficient to play out two games

a (10+10) evolution strategy. per evaluation, otherwise we need to average over more,

« ho crossover or self-adaptation depending on the temperature of the Gibb’s distribution.

« for mutation, each weight is changed by a number drawn We use a population size of two times 15, with an elitist

from N(0,0.1) selection of based on shared fitness. At every generation,

TABLE Il
DOMINANCE NUMBERS FOR A NUMBER OF SCENARIOS
(400 GENERATIONS AVERAGED OVER5 RUNS).

Game Parameters| Dominance number
Atari-Go | Non-elitist 14.8 £3
Atari-Go Elitist 27.6 £ 14
Gomoku | Non-elitist 11.0+5
Gomoku Elitist 15.6 £ 11

every host is evaluated against 15 opponents, 5 of them
parasites (according to shared sampling), and 10 players ou
of the hall of fame (which contains the player with the

best relative fitness of each generation). Both populatiof. 7.
exchange roles at each generation. We tried varying tho$t

fitness

— pop2
© o dom2

-1,00

50 100 150 200
generation

A typical coevolutionary run. Plotted is the perfomoa of the

eration champions of both populations against the ndagep The
les mark the dominant individuals (i.e. that beat all pres dominant

settings, and did not find the exact parameters values to Bgs).

very sensitive, as long as the population size is not toolsmal
and enough relative evaluations are done each generati
We also tried different temperatures for the move selectiol
but ended up falling back onto greedy play, as the resul
were not qualitatively different but much more expensive ti
compute due to the need for averaging.

There are a number of ways to track progress of coevoli
tionary runs. We will use three of them here: analyzing th
absolute fitness of the evolved networks, CIAO plots ([19]
see below) and dominance tournaments [20].

In a dominance tournament, we build a list of dominan
individuals. The first one is the first generation champior
Then, while successively going through all other genenatic
champions, we add it to the list if it can beall previous
dominant individuals. The length of that list then gives ut
the dominance numbemand it is reasonable to consider thal
the higher that number is, the more progress has been ma
Table Il shows average dominance numbers for a number u.
different training scenarios.

Fig. 8.

Typical CIAO plot (same run than figure 7). Bright paint

Figure 7 shows a typical coevolution run. The performanceprrespond to a high score, dark ones to a low one.

plotted is the one measured against the naive player (which
is inaccessible during evolution). It is interesting to enot
that this performance is not strictly increasing, and that
even the champions of the dominance tournament do not
always correspond to high absolute performance. As the high
dominance numbers show progress nonetheless, this iadicat
that evolution based on relative fitness is coming up with
different kinds of strategies than evolution based on aftsol
fitness.

To visualize the relative progress of the two populations
during a coevolutionary run, we make CIAO plots, which
show the performance of all generation champions of one
population playing against all of those of the other. If
coevolution is successful, we expect later generationseto b
better against earlier ones, thus to see brighter areasin th

and more balanced in later generations (more grayish
colors). This means that coevolution tends to lead to
more careful players, which lose late if they do, but at
the cost of not being able to win quickly against each
other.

carefully looking at individual lines in the plot, we
find that often, if one player that is winning against
one group of opponents and another player is losing
to that group, then there is another group of opponents
where those relations are exactly opposite. This seems
to indicate a kind of rock-paper-scissors situation, which
could be the reason why the absolute level of play does
not progress as much as expected during coevolution.

lower left and upper right. Figure 8 shows a typical CIAO Even with few weights, the MDRNN is capable of a
plot which exhibits that property to a small degree. Howeve{yide variety of behaviors. When inspecting the generation

we can make two other, unpredicted, observations:

champions of a coevolutionary run, we find a large diversity

« the score values themselves are more extreme (i.e. tbEthose behaviors. Due to space constraints we can show
games are shorter) with players of earlier generatiormnly a few: figure 9 shows a few games, with the same

TABLE Il 1.0
CORRELATION OF PERFORMANCE OF TRAINED NETWORKS

Game Method Train | Test | Correlation| p ".;

size | size |

Atari-Go | Coevolution| 5 | 9 045 | 0.92 8

Atari-Go Evolution 5 9 0.05 0.61 g ool

Atari-Go | Evolution 7 11 0.07 0.98 g

Gomoku | Coevolution 5 9 -0.11 0.70 E

Gomoku | Evolution 5 9 0.22 0.73 osl

Gomoku | Evolution 7 11 0.43 0.85

193 05 0.0 05 1.0
players (generation champions of a typical coevolutionary perormencen e
run) on board sizes 5x5 and 9x9. Naturally the behavioral
patterns look different on a small board and on a large one,

but they share common features. o)

0.0f

performance on 9x9

-0.5[

.
9% 05 0.0 05 o
performance on 5x5

Fig. 10. Performance of the same networks on different boaessiAll
networks are generation champions of coevolutionary ruttmva: Atari-
Go, below: Gomoku.

we find that generally the correlations are much lower, but
p is much higher. This means that, for trained networks,
the performance on a small board is less predictive of the
performance on the large boarbut it is almost always
significantly higher on the large board.

Fig. 9. |lllustrative games of some champions: here black is y&vwhe VI. DISCUSSION AND FUTURE WORK

same network, but the white players in the two rows are differe Revisiting the goals we set ourselves in the introduction,
we can now draw some conclusions. By construction, our
E. Scalability for trained networks architecture is directly usable on different board sizesne
The game-play on the 5x5 board is quite different fronon different games. Apart from incorporating the board
the one on 9x9, so there is a clear risk of evolution explgitinsymmetries, it is free from domain-specific knowledge, just
the training size and making the resulting networks notescabs the training methodology does not rely on any domain-
up anymore. Thus, as the final experiment, we attempt &pecific heuristics: the naive player that is used for most
determine the scalability of our architecture after tnaini purposes is only using the game rules.
For that, make use of the networks trained in sections V-C The variety of empirical results provide a solid con-
and V-D, and apply the same methodology than in section Virmation of our main hypothesis, that the architecture is
B. scalable. We could show that training on a small board size
Figure 10 shows how the performance (against the naitensfers well onto larger ones. A very promising result is
player) of networks trained on the 5x5 board scales to that the performance of the large majority of trained neksor
board size of 9x9. Table Ill then gives the detailed resultactually increaseswhen they are tested on networks larger
for all scenarios. The numbers are based on a minimuthan the ones they were trained on.
of 200 trained networks per scenario which are always A possible objection to the claim that our architecture is
generation champions (ignoring the champions of the firsicalable is that part of the observed effect might be due to
50 generations). the weak opponent, which might scale very weakly. Further
Comparing the correlations and the proportigngo the investigations, e.g. using a heuristic opponent, shoulalie
values we found for untrained networks in section V-Bto easily confirm or refute this interpretation.

The architecture appears to be appropriate for the domain,
at least at low levels of play. To open up possibilities for[l]
higher levels of performance, we propose to address the
following two weaknesses: 2

« to allow the network to make better uselohg-distance
dependencieéwnhich are especially common in a game
like Go), we suggest to replace the hidden units bys
LSTM cells [21].

« to allow for more complex strategies to evolve, we Eg}
suggest to stack two (or more) MDRNNSs on top of each
other, so that the outputs of the swiping units of one
form the set of inputs to the (independently) swiping [®!
units of the next one.

Preliminary experiments suggest that those enhancemenid
may be worth it. [8]
The fitness measure we used was sufficient for the pur-
poses of this paper, but we believe that, in order to reacle mor”!

ambitious performance goalspaulti-objectiveapproach may

be superior. Objectives could include: chance of winnindpwi [10]
black, with white, number of moves until losing or winning,
performance against different static opponents, and afieh
objectives used on multiple board sizes.

Our approach has been to strictly avoid domain know
edge, but it it clearly possible, even desirable, to incoafm
some in order to reach competitive performance. Most &4
the standard ways for doing so can be directly applied to
our architecture as well. For example, we could feed the
network a number of domain-specific features [15] insteadS!
of the raw board. On the other hand we could easily adjust
the output to generate a value function instead of moves, and
then use that in a standard search-based framework, possibf
with heuristic pruning of the search tree.

111

VII. CONCLUSION [13]
We have developed and thoroughly investigated the prop-
erties of a scalable neural network architecture based 6!
MDRNNSs for board games. We could show that it is scalable,
suitable for the domain, can be trained easily and the iesult
of training scale well to larger boards. [17]
As our aim was not to reach the highest performance,
we avoided using any domain knowledge, which made jtg]
possible to use the same setup for two different games, and
reach similar results. We therefore believe that it can leglus

on many similar problems as well, most notably on Go.

Naturally, our next goal will be to use the present result
as a foundation for the more ambitions project of reach-
ing state-of-the-art performance, by adding domain-gjeci
knowledge on top of it.

9]
[20]

ACKNOWLEDGMENTS [21]

This research was funded by the SNF grant 200021-
113364/1. We especially thank Julian Togelius for the in-
sightful discussions that guided the research and Faustino
Gomez for the constructive advice.

REFERENCES

E. C. D. van der Werf, H. J. V. D. Herik, and J. W. H. M. Uiter-
wijk, “Solving go on small boards,International Computer Games
Association Journalvol. 26, pp. 10-7, 2003.

T. P. Runarsson and S. M. Lucas, “Co-evolution versug-galy
temporal difference learning for acquiring position evélmin small-
board go,”IEEE Transactions on Evolutionary Computatiqgup. 628—
640, 2005.

N. Richards, D. E. Moriarty, and R. Miikkulainen, “Evahg neural
networks to play go,Applied Intelligencevol. 8, pp. 85-96, 1997.

K. lwamoto, Go for beginners Tokyo, Japan: Ishi Press, 1972.

G. Konidaris, D. Shell, and N. Oren, “Evolving neural werks
for the capture game,” ifProceedings of the SAICSIT Postgraduate
Symposium2002.

B. Freisleben and H. Luttermann, “Learning to Play the Garh&o-
Moku: A Neural Network Approach Australian Journal of Intelligent
Information Processing Systems, Vol. 3, Nppg. 52 — 60, 1996.

D. Silver, R. S. Sutton, and M. M. 0003, “Reinforcementrtéag of
local shape in the game of go,” IdCAI, 2007, pp. 1053—-1058.

Y. Lecun and Y. BengioConvolutional Networks for Images, Speech
and Time Series The MIT Press, 1995, pp. 255-258.

K. O. Stanley and R. Miikkulainen, “Evolving a roving eyer go,” in
Proceedings of the Genetic and Evolutionary Computationf€@ence
(GECCO) 2004.

N. N. Schraudolph, P. Dayan, and T. J. Sejnowski, “Terapdiffer-
ence learning of position evaluation in the game of go,Aufvances
in Neural Information Processing Systends D. Cowan, G. Tesauro,
and J. Alspector, Eds., vol. 6. Morgan Kaufmann, San Fraacisc
1994, pp. 817-824.

X. Pang and P. J. Werbos, “Neural network design for jcfion
approximation,” inin Dynamic Programming, Math. Modelling and
Scientific Computing (a Principia Scientia journdl996.

A. Graves, “Supervised sequence labelling with resarmeural net-
works,” Ph.D. in Informatics, Fakultatif Informatik — Technische
Universi@t Miinchen, Boltzmannstrasse 3, D - 85748, Garching bei
Munchen, Germany, 2008.

P. Baldi and G. Pollastri, “The principled design ofdarscale recur-
sive neural network architectures dag-rnns and the pratircture
prediction problem,"Journal of Machine Learning Researchol. 4,
pp. 575-602, 2003.

A. Graves, S. Feidndez, and J. Schmidhuber, “Multidimensional
recurrent neural networks,” iRroceedings of the 2007 International
Conference on Atrtificial Neural NetworkBorto, Portugal, September
2007.

L. Wu and P. Baldi, “A scalable machine learning approszigo,” in
Advances in Neural Information Processing System®81%clolkopf,

J. Platt, and T. Hoffman, Eds. Cambridge, MA: MIT Press, 2007,
pp. 1521-1528.

T. Back, F. Hoffmeister, and H.-P. Schwefel, “A survey of evauati
strategies,” inProc. Fourth Int'l Conf. Genetic Algorithms (ICGA'91),
San Diego CAR. K. Belew and L. B. Booker, Eds. San Mateo CA:
Morgan Kaufmann, 1991, pp. 2-9.

A. Lubberts and R. Miikkulainen, “Co-evolving a go-plag neural
network,” in Genetic and Evolutionary Computation Conference Work-
shop Program Morgan Kaufmann, 2001, pp. 14-19.

C. D. Rosin and R. K. Belew, “Methods for com-
petitive co-evolution: Finding opponents worth beatingih
Proceedings of the Sixth International Conference on Genet
Algorithms L. J. Eshelman, Ed. San Francisco, CA:
Morgan Kaufmann, 1995. [Online]. Available: http://www.mpi
sb.mpg.de/services/library/proceedings/contentsgisdeaml

D. Cliff and G. F. Miller, “Tracking the red queen: Measments
of adaptive progress in co-evolutionary simulations,’Advances In
Artificial Life. Springer Verlag, 1995, pp. 200-218.

K. O. Stanley and R. Miikkulainen, “Competitive coevban through
evolutionary complexification,'Journal of Artificial Intelligence Re-
search vol. 21, pp. 63-100, 2004.

S. Hochreiter and J. Schmidhuber, “Long short-term methdigural
Computation vol. 9, no. 9, pp. 1735-1780, 1997.

