
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 4, DECEMBER 2014 325

An Extensible Description Language for Video Games
Tom Schaul

Abstract—In this short paper, we propose a powerful new tool
for conducting research on computational intelligence and games.
“PyVGDL” is a simple, high-level, extensible description language
for 2-D video games. It is based on defining locations and dynamics
for simple building blocks (objects), together with local interaction
effects. A rich ontology defines various controllers, object behav-
iors, passive effects (physics), and collision effects. It can be used
to quickly design games, without having to deal with control struc-
tures. We show how the dynamics of many classical games can be
generated from a few lines of PyVGDL. Furthermore, the accom-
panying software library permits parsing and instantly playing
those games, visualized from a bird’s-eye or first-person viewpoint,
and using them as benchmarks for learning algorithms.

Index Terms—Artificial general intelligence (AGI), bench-
marking, description language, general game playing, video
games.

I. MOTIVATION

The majority of research in computational intelligence and games is
based on just one, or a handful of similar games. This has the advan-
tage of producing a high diversity of methods and algorithms, tailored
to some degree to the games of interest. The disadvantage is that be-
cause of a lack of generality, many of the proposed methods do not
generalize easily to new problems, and even fewer are useful across
different genres of games. One (ambitious) direction for computational
intelligence in games (CIG) research is for game collections to be used
as benchmarks for the development of general-purpose intelligence al-
gorithms (AGI), as proposed in [1].
In a recent Dagstuhl workshop, it was proposed to develop a

video game description language (VGDL) in order to facilitate the
generation (guided or automatic) of very large and diverse portfolios
of games—thousands of games in dozens of genres—which, in turn,
would be suitable for evaluating architectures and algorithms that
purport to be general purpose; the complete deliberations are published
in a report [2]. Among the envisioned criteria are that the language
should be clear, human readable, and unambiguous. Its vocabulary
should be highly expressive from the beginning, yet still extensible to
novel types of games. Its representation structure should be easy to
parse and visualize, so that it maps directly onto a (human-)playable
game, which in addition must run fast enough to support learning and
evaluation. Finally, it should facilitate automatically generated games,
in such a way that default settings and sanity checks enable most
random game descriptions to be actually playable.
Existing description languages for games tend to focus on classes

of classical games, such as board games [5] or text-based adventures

Manuscript received September 10, 2013; revised May 13, 2014 and June
30, 2014; accepted July 16, 2014. Date of publication August 27, 2014; date
of current version December 11, 2014. This work was supported in part by the
National Research Fund Luxembourg under AFR Postdoctoral Grant 2915104.
The author was with the Courant Institute of Mathematical Sciences, New

York University, NewYork, NY 10003USA.He is nowwith Google DeepMind,
London EC3M 5DJ, U.K. (e-mail: schaul@gmail.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCIAIG.2014.2352795

[6]. The elegant Ludocore framework [4] permits the modeling of the
logical structure of video games, but not creating playable games. On
the other hand, high-level programming/scripting languages for video
games exist (e.g., [7] and [8]), but none are as deliberately abstract, or
viable for generative approaches.
The related approach most widely used by researchers is the gen-

eral game playing framework (GGP; [3]), with its associated annual
competition at the Association for the Advancement of Artificial In-
telligence (AAAI). Its description language GDL, designed for logic-
based games, is extraordinarily expressive, while still being clear, un-
ambiguous and human readable (or at least, logician readable). On the
other hand, GDL is less suited to the last two criteria; evenwhen parsed,
checking the validity in a GDL game is difficult, and move resolution
can be slow. Also, game descriptions are rather lengthy (because there
is no support for hierarchical concepts, all objects are defined from the
ground up), and it is easy to incorrectly define games. Further, GDL is
not designed primarily for human interactions, and is not able to au-
tomatically generate an intuitive interface for human play. A volun-
tary restriction to a video game-style interface (observations on a 2-D
screen, a limited number of discrete actions), and favoring the reuse of
common game elements at the cost of generality, may thus be an inter-
esting tradeoff.
For the types of video games we are interested in, this work draws

particular inspiration from the Arcade Learning Environment (ALE)
[9], a unified framework for interacting with a broad collection of ex-
isting games from the classic Atari 2600 console—but with the desire
to both extend it to new games that were never built for Atari, and to
simplify existing ones. A related, but less ambitious precursor to our
design was proposed in [10]. For a broader overview, limitations, and
many additional references, see [2] and [11].
In a recent paper [12], we formally defined PyVGDL, a concrete

instantiation of a VGDL that satisfies the desirability criteria, with
a particular tradeoff between specificity (with 2-D object- and col-
lision-based game dynamics) and generality (with an extensible on-
tology). At the same time, we introduced an accompanying implemen-
tation in Python, and demonstrated that the library interface allows a
diverse set of learning approaches to learn in such games, including
model-based and fully observable policy iteration, model-free and par-
tially observable reinforcement learning, and direct evolution of bot
controllers. This short paper restates the core elements of [12], com-
plemented with follow-up work on the language and its ontology of
components, and shows the extensibility aspect of the language.

II. THE PYVGDL LANGUAGE

The initial ideas for the description language were laid out in [2], and
a fleshed-out prototype was presented in [12]. This section summarizes
the main elements, and introduces some recent innovations.

A. Design

The language is designed around objects in a 2-D space. All objects
are physically located in a rectangular space (the screen), with associ-
ated coordinates (and possibly additional physical properties). Objects
can move actively (through internally specified behaviors, or player
actions), move passively (subject to physics), and interact with other
objects through collisions. All interactions are local, subject to rules
that depend only on the two colliding objects, and can lead to object

1943-068X © 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

326 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 4, DECEMBER 2014

Fig. 1. Textual level description for a Legend of Zelda-like game (left), and its rendering (right). Here the avatar of Link “A” starts in the top left, needs to find a
key “+,” and exits through to the goal “G,” while avoiding or killing monsters “1.” Impenetrable walls are found at the “w” locations.

disappearance, spawning, transformation, or changes in object prop-
erties. To a certain degree, nonlocal interactions can still be achieved,
e.g., through projectile particles or teleportation effects. The avatar(s)
are special types of objects, in that they are also affected by control
signals from the bot or human player.
Our emphasis on locality has the advantage that most decisions can

be made with just local context, simplifying the task for bots that learn
or plan in such games, especially if they only have subjective observa-
tions available, and as a side-effect speeding up the engine itself. Con-
sistently with this, we deliberately do not allow for global variables or
dynamics (with the exception of end-of-game timers)—while this may
be common practice for programmers, it is unnecessary for describing
most games (by localizing resources like health or mana within the
avatar object). Enforced locality also makes it very easy to extend a
game to a variant with two or more players: just initialize a level with
more avatar objects.
A game instance is initialized from a starting configuration (defined

in a textual level description; see below) and terminated after a fi-
nite number of timesteps with score value (which indicates win/loss).
Longer games are formed by chaining such atomic instances together,
usually by just providing more difficult levels subject to the same game
dynamics, but possibly also by varying the game dynamics (e.g., in-
creasing gravity in Lunar Lander).

B. Implementation

The canonical1 video game description language is implemented in
Python, and builds directly on the widely used pygame package for
game development [8] (but is much higher level); henceforth, we refer
to it as “PyVGDL.” The syntax is based on a simplified version of
the syntax of the Python language itself, retaining white-space-based
indentation, comments, and keyword arguments. However, game de-
scriptions must conform to a strict treelike structure which resembles
more closely an XML schema. A formal description of the syntax’s
context-free grammar can be found in [12].
This is an open-source project, all code is licensed under the non-

restrictive Berkeley software distribution (BSD) license, and we wel-
come contributions—in the form of new games, new levels, new ob-
ject or collision dynamics for the ontology, as well as improvements to

1Some subtle aspects like the exact execution order of contradicting instruc-
tions upon simultaneous collisions are difficult to specify explicitly, which is
why a reference implementation is relevant.

the core library. The complete source code, including many example
games, is available at: https://github.com/schaul/py-vgdl.
There is also a functionally equivalent Java implementation of the

language,2 which currently supports all the features of PyVGDL, ex-
cept for the continuous physics aspects.

C. Game Descriptions

Agame is defined by two separate components: the level description,
which essentially describes the positions of all objects and the layout of
the game in 2-D (i.e., the initial conditions); and the game description
proper, which describes the dynamics and potential interactions of all
the objects in the game.
The level description is simply a text string with a number of equal-

length lines, where each character maps to one or more objects at the
corresponding location of the rectangular grid. See Fig. 1 for an ex-
ample level description.
The game description is composed of four blocks of instructions.

Fig. 2 provides an example of a full game description, based on the
game Legend of Zelda, and we will refer to it to illustrate the different
concepts below.
• The LevelMapping describes how to translate the characters
in the level description into (one or more) objects, to generate the
initial game state. For example, each “1” spawns an object of the
“monster” class.

• The SpriteSet defines the classes of objects used, all of which
are defined in the ontology, and derive from an abstract VGDL-
Sprite class. Object classes are organized in a tree (using nested
indentations), where a child class will inherit the properties of its
ancestors. For example, there are two subclasses of avatars, one
where Link possesses the key and one where he does not. Fur-
thermore, all class definitions can be augmented by keyword op-
tions. For example, the “key” and “goal” classes differ only by
their color and how they interact.

• The InteractionSet defines the potential events that happen
when two objects collide. Each such interaction maps two object
classes to an event method (defined in the ontology), possibly aug-
mented by keyword options. For example, swords kill monsters,
monsters kill the avatar (both subclasses), nobody is allowed to
pass through walls, and when Link finds a “key” object, the avatar
class is transformed.

2https://github.com/EssexUniversityMCTS/gvgai

SCHAUL: AN EXTENSIBLE DESCRIPTION LANGUAGE FOR VIDEO GAMES 327

Fig. 2. Game description for a Legend of Zelda-like game. Words in violet
are (arbitrary) user-defined identifiers for different sprite types (used elsewhere
using the keywork parameter stype); the text in blue is referring to compo-
nents from within the ontology. Note the hierarchy of class definitions in the
“SpriteSet” block, the on-the-fly specialization of ontology elements with the
“keyword value” format. For example, effects that set the scoreChange
attribute affect the global game score.

• The TerminationSet defines different ways by which the
game can end, with termination criteria available through the
ontology that can be further specialized with keyword options.
Here, it is sufficient for winning to capture the goal, i.e., bring the
sprite counter of the “goal” class to zero.

D. Ontology

What permits the descriptions to be so concise is an underlying on-
tology which defines many high-level building blocks for games, in-
cluding the types of physics used, movement dynamics of objects, and
interaction effects upon object collisions. The hybrid approach of a
simple description language with an extensible ontology is a tradeoff
between simplicity and extensibility: it keeps game descriptions simple
and allows nonprogrammers to quickly build new games, while at the
same time giving the freedom to more advanced users to use new types
of dynamics by adding a few lines of Python code to extend the on-
tology. Some examples from the current ontology are:
• spawning, cloning, and elimination of objects, as well as transfor-
mation from one type into another;

• self-propelled movements of objects, taking consistent or random
actions, or erratically changing direction;

• player-controlled movements, including grid-navigation, ar-
tillery-angle control, jumping, shooting (spawning a projec-
tile), continuous flight control;

• nondeterministic chasing and fleeing behaviors;
• projectile objects, spawned at the location of other objects, trig-
gered by schedules, user actions, or collisions;

• stickiness, i.e., one object pulling another one;

• bouncing andwraparound behavior, from other objects or the edge
of the screen;

• teleportation of objects, to fixed or random end locations;
• continuous physics like inertia, friction, and gravity;
• stochastic effects like slipping or wind gusts.

Some of these effects can also be executed conditionally on local state,
depending on relative velocity or resources in possession (see below).
Currently under development are smarter pathfinding behaviors,

and in the near future the ontology should also include features
like momentum-preserving object splits, area-of-effect events, and
line-of-sight conditions.

E. Resources

Objects can have a number of properties that determine how they
are visualized (color, shape, orientation), and how they are affected
by physics (mass, momentum). One additional kind of property is re-
sources, like health, mana, or ammunition, which increase or decrease
by interactions with other objects (finding health packs, shooting,
taking fall damage). Some interaction effects are conditional on the
amount of resources available to the objects (e.g., if health is too low,
an object might be killed by a collision, but not otherwise).
Here, resources are always local to an object; they are automati-

cally added to the object that collected resources, and visualized with
a progress bar (in the same color as the resource); see Fig. 3.

F. Mix, Match, Extend

Many ontology components are easily recombinable through sub-
classes and keyword options. For example, an object class, when de-
fined with the option physicstype=GravityPhysics dramati-
cally alters its behavior (now suddenly being subjected to gravity). See,
for example, the game description of Lunar Lander in [12]. Also, as all
projectiles are object classes themselves, their interactions with other
objects or level structures can be altered in very simple ways. Recom-
binability goes as far as permitting level descriptions that were intended
for one type of game to be used in a very different context, akin to what
is done in the game ROM Check Fail [13].
It is relatively straightforward to extend the provided ontology of

behaviors, effects, and object classes. In fact, most of the many prede-
fined classes and effects are coded in just a handful of lines of Python
code. This permits easy prototyping of novel game dynamics, which
can immediately be recombined with existing ones. For example, for
the game Super Mario, it was necessary to distinguish the direction of
movement of a collision—only when hitting a Goomba from above is
it killed by Mario. So we added the following code to the ontology:

where rect and lastrect denote the current and previous position
of an object, and the more general method killSprite was defined
previously.

G. Limitations

As with all description languages, the design of PyVGDL involves
tradeoffs which favor some classes of games over others. The two ob-
vious limitations are the restriction to 2-D games, and the reliance on
local interactions as discussed above. Some typical video game fea-
tures, such as an inventory filled with various types of items, would
be unnatural to implement in the current framework because it would

328 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 4, DECEMBER 2014

Fig. 3. Resource bars are visible on the avatar. (Left) The ammunition/mana of a first-person shooter, with additional mana blocks (blue) available for pickup.
(Right) The Boulder Dash agent has accumulated some gold, but not yet enough to exit the level, as the yellow progress bar indicates.

involve a combinatorial number of avatar types. It is also lacking the
logical rules and composability available in classical languages such as
GDL, which impoverishes the expressibility to more superficial types
of interactions. For example, it is not currently possible to distinguish
legal and illegal moves and reason about them, except bymaking illegal
moves have no effect (such as when Link tries to move into a wall ob-
ject). Also, as a procedural language, it lacks the advantages of more
declarative approaches, making it difficult to reason about PyVGDL
games.

III. EXAMPLE GAMES

To demonstrate the wide spectrum of games that can be encoded in
PyVGDL, we implemented simplified versions of a number of clas-
sical, well-known games, for example:
• Space Invaders, with shooting, complex movement sequences,
timed spawning points;

• Frogger, with sticky objects, a simplistic log resource that protects
from drowning, and wraparound movement;

• Lunar Lander, with gravity and inertial effects;
• Physical Traveling Salesman Problem (PTSP [14]), with contin-
uous control of wall-bouncing spaceship;

• Pac-Man, showing off simple ghost chasing behaviors and trans-
formative power pills;

• Sokoban, where the agent can push blocks around in a maze, but
not pull them;

• Dig-Dug, with diggable ground, and sacks of gold that fall through
the tunnel system when touched;

• Portal, exploring different teleportation mechanisms;
• Legends of Zelda, with a unique directional attack, keys, and
locked doors; see Figs. 1 and 2;

• Super Mario, including elevator platforms, Goombas, and Koopa
Paratroopas, and direction-sensitive collisions;

• Pong, showcasing a simple two-player game;
• Tank Wars, a two-player game with aimed artillery pieces;
• Zombie Apocalypse, with infinitely many opponents and a replen-
ishable health resource;

• First-Person Shooter, with ammunition-limited firing of missiles,
and ammo packs to be found in the level;

• Boulder Dash, where the exit can be used only under the resource
condition that sufficient gold has been collected.

The first three of these were the motivating examples in [2], and a
few of the others are depicted in Fig. 4. All of them ship with the library,
and serve the double purpose of providing a potential game developer
with a tool to learn the language by example. The game descriptions
are all concise and simple. The descriptions in Fig. 2 are typical in
that respect, and indeed none of the games mentioned require game
descriptions of more than 40 lines.

IV. INTERPRETER AND INTERFACES

As detailed above, the PyVGDL library defines a game description
language, and an initial ontology of behaviors, but it also encompasses
a wide range of additional tools that are designed to make it directly
useful to the computational intelligence researcher.
The parser implemented for the syntax handles both level descrip-

tions and game descriptions, and given one of each (provided as text
strings), it generates the full code for the game (in Python). The gener-
ated game object includes the dynamics, on-screen visualization, and
interactions with the (human or artificial) player. Parsing and instan-
tiation takes less than a second, making all generated games instantly
playable.

A. Visualization

Games are visualized on screen either in bird’s-eye or first-person
view, but it is possible to disable the visualization, which results in dra-
matic speed gains (e.g., for planning or learning). Furthermore, tools
are included for recording the actions taken during a game and re-
playing them, for creating animated GIF videos from such replayed
action sequences, and even to automatically uploading game videos to
YouTube.
Our objective was for PyVGDL to remain lightweight, fast, and

agile, so very little emphasis has been placed on sophisticated rendering
of the objects, creatures, and environment, nor are there any flashy ani-
mated effects (most objects are just solid colored squares). This aspect
is extensible, however, because care was taken to keep the graphical
aspects and the game dynamics separate, so interfacing to a more ad-
vanced rendering engine should be easy.

SCHAUL: AN EXTENSIBLE DESCRIPTION LANGUAGE FOR VIDEO GAMES 329

Fig. 4. Renderings (bird’s-eye view) of a few example games. Clockwise from the top left: Pong, Boulder-Dash, Tank Wars, Physical TSP, Dig-Dug,
Super Mario, Lunar Lander, Pac-Man, and a shooter game.

B. Interfaces

Games can be interfaced in a number of different ways.
• Player type: We currently support direct interactive play with
human players (via the keyboard), and an interface to arti-

ficial players (bots), which may take one action per cycle.
The interface for the bots is conforming to the “Agent/Envi-
ronment/Task” model of the PyBrain machine learning library
[15].

330 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 4, DECEMBER 2014

Fig. 5. For the same game state, we show the rendered game from (left) the bird’s-eye perspective, and (right) the first-person perspective. Note how in the
subjective view, impenetrable objects like walls are shown as blocks, while other objects (the green one in the corner) are drawn on the level floor.

• Number of players: The library currently supports one or two
players.

• Perspective: By default, a game is played from the bird’s-eye per-
spective (objective), with the full rectangular 2-D space visible at
once. As an alternative, we also provide an option to play from a
first-person viewpoint (subjective), where the game becomes ef-
fectively partially observable (not implemented for all types of
physical dynamics yet). For an illustration, see Fig. 5.

• Observation: Orthogonally to the perspective of obser-
vation, we also provide to different types of encoding
for observations provided to bots: they are available
rendered visually as a medium-resolution image, or in
“clean” form, representing only the functionally different
components.

• Model: Some learning and planning approaches rely on the avail-
ability of a complete forward model of the game dynamics, in
order to simulate (roll out) action sequences before taking a de-
cision. This is always available, as the game state can be read,
stored, and reset after the rollout. To further accommodate model-
based approaches, we provide a conversion tool, which transforms
the game dynamics into the full transition matrices of a Markov
decision process (MDP).

C. Learning

Producing agents that exhibit competent behavior in a game envi-
ronment is a very general problem, and not surprisingly, drastically
different methodologies exist, but PyVGDL aims to be agnostic with
respect to how its games are used in that context. The companion
paper [12] showed how the PyVGDL framework can be used to learn
competent behaviors in a broad range of scenarios: when a model
of the game dynamics is available, or when it is not, when full state
information is given to the agent, or just subjective observations, and
for a number of different learning algorithms (including dynamic
programming, value-based reinforcement learning, and evolution
strategies). All the scripts used to produce the results of that paper
are distributed with the PyVGDL code as use-case examples. Since
then, the framework has been extended to include a more complete,
fine-grained score system, with intermediate rewards that should
help to speed up learning, at least for reinforcement learning (RL)
approaches.

V. FUTURE: VIDEO GAME OLYMPIAD

Working backward from the long-term goal of using games to foster
artificial general intelligence [1], a recent proposal has argued for ex-
tending the framework of general game playing to video games [11],
and to establish an AI competition where agents must demonstrate their
proficiency on a wide range of video games. To make this feasible,

the authors proposed to limit the domain to arcade-style games in 2-D,
which form a sufficiently diverse space, given that they kept a genera-
tion of human gamers interested.
Directly in this vein, we propose to use PyVGDL as the basis for

setting up a Video Game Olympiad, because it is explicitly designed
to facilitate using a very broad range of games with a unified interface,
which eventually capture the majority of mechanisms found in arcade
games. The games on which agents are evaluated can further be split
into some that are seen during training/agent design, and another set of
variants, or completely unseen ones that are used for the final evalua-
tion, akin to the Polyathlon in the RL competition [20], [21]. It stands to
reason that building algorithms that are competitive under such circum-
stances will improve our understanding of general-purpose and transfer
learning. A first edition of such a competition based on PyVGDL was
held at the 2014 IEEE Conference on Computational Intelligence and
Games (CIG 2014, Germany, Dortmund).3

VI. CONCLUSION

We proposed “PyVGDL,” a powerful new tool for conducting re-
search on computational intelligence and games. To conclude, we re-
visit the six original objectives set out in [2].
• Our language is human readable and high level, enough for non-
programmers to design new games.

• It is unambiguous and instantly parsable into playable games.
• The concise structure lends itself to game-evolutionionary ap-
proaches, in particular to crossover operators.

• It is expressive enough to describe a very broad range of arcade-
style video games, and concisely so.

• As this paper aims to demonstrate, it is extensible through its flex-
ible ontology of components.

• While a generative approach (not just of game levels, but of full
game dynamics) remains to be tried, it is plausible that many
random descriptions (with a few weak consistency constraints)
lead to viable games.

The library’s availability as an open-source package is an invitation for
others to use and build upon it. As we have demonstrated, the ontology
can easily be extended, but evenwithout further extensions,many inter-
esting new games can bewritten in PyVGDL and are instantly playable.

ACKNOWLEDGMENT

The author would like to thank the anonymous reviewers for their
constructive feedback, the other contributors to the PyVGDL library,
namely J. Togelius, S. Samothrakis, D. Perez, and C.-U. Lim; and also
the participants of the 2012 Dagstuhl Seminar on Artificial and Com-
putational Intelligence in Games, in particular, M. Ebner, J. Levine,

3http://www.gvgai.net

SCHAUL: AN EXTENSIBLE DESCRIPTION LANGUAGE FOR VIDEO GAMES 331

S. Lucas, T. Thompson, and J. Togelius for the discussions that trig-
gered and inspired the development of this work.

REFERENCES
[1] T. Schaul, J. Togelius, and J. Schmidhuber, “Measuring intelligence

through games,” 2011 [Online]. Available: http://arxiv.org/abs/1109.
1314

[2] M. Ebner, J. Levine, S. Lucas, T. Schaul, T. Thompson, and J.
Togelius, “Towards a video game description language,” Dagstuhl
Follow-up, 2013 [Online]. Available: http://www.idsia.ch/~tom/pub-
lications/dagstuhl-vgdl.pdf

[3] M. Genesereth and N. Love, “General game playing: Overview of the
AAAI competition,” AI Mag., vol. 26, pp. 62–72, 2005.

[4] A. M. Smith, M. J. Nelson, and M. Mateas, “Ludocore: A logical game
engine for modeling videogames,” in Proc. IEEE Symp. Comput. Intell.
Games, 2010, pp. 91–98.

[5] C. Browne, “Evolutionary game design,” IEEE Trans. Comput. Intell.
AI Games, vol. 2, no. 1, pp. 11–21, Mar. 2011.

[6] G. Nelson, The Inform Designer’s Manual. Oxford, U.K.: Placet So-
lutions, 2001.

[7] G. Maggiore et al., “A formal specification for Casanova, a language
for computer games,” in Proc. 4th ACM SIGCHI Symp. Engineering
Interactive Comput. Syst., 2012, pp. 287–292.

[8] W. McGugan, Beginning Game Development With Python and
Pygame: From Novice to Professional. New York, NY, USA:
Apress, 2007.

[9] M. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,”
2012 [Online]. Available: http://arxiv.org/abs/1207.4708

[10] J. Togelius and J. Schmidhuber, “An experiment in automatic game de-
sign,” in Proc. IEEE Symp. Comput. Intell. Games, 2008, pp. 111–118.

[11] C. B. Congdon et al., “General video game playing,” Dagstuhl
Follow-up, 2013.

[12] T. Schaul, “A video game description language for model-based or in-
teractive learning,” in Proc. IEEE Conf. Comput. Intell. Games, 2013,
DOI: 10.1109/CIG.2013.6633610.

[13] Farbs, “Rom check fail (game),” 2008 [Online]. Available: http://www.
farbs.org/games.html

[14] D. Perez, P. Rohlfshagen, and S. M. Lucas, “The physical travelling
salesman problem: WCCI 2012 competition,” in Proc. IEEE Congr.
Evol. Comput., 2012, DOI: 10.1109/CEC.2012.6256440.

[15] T. Schaul et al., “PyBrain,” J. Mach. Learn. Res., vol. 11, pp. 743–746,
2010.

[16] C. B. Browne et al., “A survey of Monte Carlo tree search methods,”
IEEE Trans. Comput. Intell. AI Games, vol. 4, no. 1, pp. 1–43, Mar.
2012.

[17] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: A Bradford Book, 1998.

[18] J. Togelius et al., “Ontogenetic and phylogenetic reinforcement
learning,” Zeitschrift Künstliche Intelligenz, vol. 3, Special Issue on
Reinforcement Learning, pp. 30–33, 2009.

[19] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Evolving competitive
car controllers for racing games with neuroevolution,” in Proc. 11th
Annu. Conf. Genetic Evol. Comput., 2009, pp. 1179–1186.

[20] S. Whiteson, B. Tanner, and A. White, “The reinforcement learning
competitions,” AI Mag., vol. 31, no. 2, pp. 81–94, 2010.

[21] B. Tanner and A. White, “Rl-glue: Language-independent software for
reinforcement-learning experiments,” J.Mach. Learn. Res., vol. 10, pp.
2133–2136, 2009.

